首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microtuberization in potato (Solanum tuberosum L.)   总被引:7,自引:0,他引:7  
Twenty-two genotypes of potato (Solanum tuberosum L.) were induced to form microtubers under six in vitro culture conditions. Cultures maintained under a short photoperiod (10 h of 6–12 μmol m–2 s–1) and low temperatures (day 20°±2°C and night 18°±2°C) had both a higher yield (255 mg/plantlet) and a greater number (2/plantlet) of microtubers than those maintained under long days (16 h of 38–50 μmol m–2 s–1) combined with high temperatures (day 28°±2°C and night 25°±2°C) (yield 207 mg/plantlet; microtuber number, 0.9/plantlet), over a wide range of genotypes. After the plantlets had been cultured under long days for an initial period of 60 days, continuous darkness advanced microtuberization by 2–3 months in various genotypes. Under short-day and low-temperature conditions the addition of 6-benzylaminopurine increased microtuber yield from 255 mg/plantlet to 645 mg/plantlet and average microtuber weight from 115 mg to 364 mg. A similar pattern was observed under conditions of long days and high temperature, and continuous darkness and low-temperature. Microtubers produced under light had a greater number of eyes (maximum average: 5.96/microtuber) than those produced in the dark (maximum average: 3.50/plantlet). The genotype × cultural conditions interactions were significant indicating the importance of developing genotype-specific protocols to maximize microtuberization. Received: 17 September 1997 / Revision received: 12 December 1997 / Accepted: 1 January 1998  相似文献   

2.
Light interception, stomatal conductance and chlorophyll fluorescence were measured in potato ( Solanum tuberosum L.) grown either irrigated, or droughted from the time of plant emergence. Compared with the irrigated treatment, drought reduced both light interception and stomatal conductance. In both treatments, the yields of variable fluorescence in the dark- and light-adapted states (Fy/Fm and F'v/F'm, respectively) were negatively correlated with photosynthetic photon flux density (PPFD) and mirrored daytime changes in PPFD. Photochemical quenching was positively correlated with PPFD, but the dominant effect of F'v/F'm resulted in a decrease in the quantum yield of photosystem II (PSII) electron transport with increasing PPFD.
Drought had no significant effect on the functioning of PSII and the balance between photochemical and non-photochemical quenching was unaffected. Non-photochemical quenching was not increased by drought and the quantum yield of PSII electron transport was unaffected. It is concluded that, in leaves of droughted plants, excess energy, resultant of stomatal limitation of photosynthesis, was dissipated by photochemical quenching such as increased photorespiration.  相似文献   

3.
4.
Abstract A negative correlation between water-use efficiency (W), defined as the ratio of moles of carbon in the plant to moles of water transpired, and carbon isotope discrimination (Δ) was established for barley in pot experiments using 12 cultivars. The correlation was strong in two independent experiments in four different controlled environment where ambient temperature and vapour pressure deficit were varied and plants were either well-watered or given limited amounts of water. Variation among cultivars was found in both Δ and W and rankings of both parameters, according to cultivar, were similar in different environments. Limiting water usually increased water-use efficiency of plants. Total dry matter can be substituted for moles of carbon when calculating water-use efficiency but the correlation between W and Δ were calculated using the carbon content of dry matter. There were differences varied significantly among cultivars. Despite these differences, correlations were also large between whole plant W and Δ of any of the plant parts. The amount of dry matter partitioned into reproductive growth varied genetically, as did the effect of stress on the partitioning. Growth, W and Δ of barley were compared with theory derived from gas exchange properties and with other literature. The effect on W of variation in vapour pressure deficit in these experiments was removed by multiplying W by vapour pressure deficit to derive the parameter, k(Pa mol C/mol H2O). This allowed comparisons among experiments with different vapour pressure deficits. The mean k for these barley cultivars was similar to that calculated by others for grasses. However, variation was found, and, in contrast with previous work which treats k as a species constant, we conclude that there is promise in selecting for increased k.  相似文献   

5.
研究马铃薯茎尖超低温保存技术的结果表明,4℃低温下锻炼6d,在添加二甲基亚砜(DMSO)和乙酰胺的培养基中预培养5d,60%PVS2于室温下装载30min,0℃下PVS2脱水40min时,茎尖成活率最高(71.6%),再生植株生长分化正常。进一步对再生植株进行AFLP分析,6对引物组合共扩增出385条带,超低温保存前后的材料之间未见到明显差的异带,但用MSAP技术分析超低温保存前后植株甲基化的结果显示:超低温保存后的材料均有不同程度的甲基化。在扩增的624条带中,处理与否之间完全一致的带型为584条;有变化的带型为40条,处理2(茎尖经过完整的超低温保存过程,区别于处理1,增加了冷冻、解冻和洗涤后恢复培养)有13个位点的甲基化增加,21个位点去甲基化。  相似文献   

6.
Maturation of potato (Solanum tuberosum L.) tuber native and wound periderm and development of resistance to periderm abrasion were investigated utilizing cytological and histochemical techniques. Both native and wound periderm consist of three different tissues: phellem, phellogen and phelloderm. It was previously determined that the phellogen walls of immature native periderm are thin and prone to fracture during harvest, leading to periderm abrasion (excoriation). Phellogen walls thicken and become less susceptible to fracture upon maturation of the periderm, leading to resistance to excoriation. We now demonstrate that phellogen cells of immature wound periderm also have thin radial walls and that wound periderm abrasion is due to fracture of these walls. Maturation of the wound periderm is also associated with an increase in the thickness of the phellogen radial walls. Histological analysis with ruthenium red and hydroxylamine-FeCI2, which stain unesterified and highly methyl-esterified pectins, respectively, indicates that the phellogen cell walls of native and wound periderm differ significantly regardless of the stage of maturity. Results obtained by staining with ruthenium red and hydroxylamine-FeCI2 imply that phellogen cell walls of immature native periderm contain methyl-esterified pectin, but are lacking in unesterified (acidic) pectins. Maturation of native periderm is accompanied by an apparent increase in unesterified pectins in the walls of phellogen cells, which may allow for the strengthening of phellogen cell walls via calcium pectate formation. Histological staining of the phellogen walls of wound periderm, on the other hand, implies that these walls are deficient in pectins. Moreover, maturation of wound periderm is not accompanied by an increase in unesterified pectins in these walls. Since peroxidase is known to catalyse the cross-linking of cell wall polymers, we stained native and wound periderm for the presence of peroxidase utilizing guaiacol as a substrate. Peroxidase staining was strong in the phellogen walls of both immature and mature native periderm and we could not detect any differences in staining between them. Peroxidase staining was weak in the phellogen walls of immature wound periderm and was not detectably different in mature wound periderm. Peroxidase data imply that there are distinct differences between native and wound periderm, though our data do not indicate that changes in peroxidase activity are involved in the development of resistance to periderm abrasion that occurs upon maturation of the periderm. However, we cannot rule out the involvement in this process of peroxidase isozymes that have low affinity for the substrates utilized here.  相似文献   

7.
Qualitative and quantitative analyses of endogenous jasmonoids were done by liquid chromatography/selected ion monitoring (LC-SIM) using deuterium-labeled compounds as internal standards. To prove the practicality of this way of analyzing the contents of endogenous jasmonoids in plants, the method was used for estimating jasmonoids in potato plants.  相似文献   

8.
Potato tubers ( Solanum tubersoum cvs Bintje and King Edward). never exposed to light, lack chlorophyllous pigments. Continuous irradiation results in chlorophyll (Chl) formation and induces the ability for protochlorophyll (Pchl) formation when the tubers are brought back to darkness. Pigment synthesis takes place in both blue and red light, but blue light is more effective than red in starting the greening process. The pigment formation is strongest in the layers just below the periderm with a steep gradient inwards. Small amounts of Chl formed after irradiation. slowly fade away during extended darkness. However, the Chl formed after long time of irradiation is remarkably stable. Irradiated potatoes, placed in darkness, form Pchl with a fluorescence emission peak at 633 nm. A maximal level is reached after ca 7 days. Resolution of the Pchl spectrum suggests the presence of small amounts of a pigment with an emission maximum at around 642 nm. No sign of the Pchl with emission maximum at 657 nm, which dominates in etiolated leaves, is found. A faint Chl fluorescence indicates that some Pchl, probably the 642 nm form, is phototransformed into Chl in weak light. The Chl formation in the potato tuber is discussed in relation to that of roots and leaves.  相似文献   

9.
A FACE (Free Air CO2 Enrichment) experiment was carried out on Potato (Solanum tuberosum L., cv. Primura) in 1995 in Italy. Three FACE rings were used to fumigate circular field plots of 8 m diameter while two rings were used as controls at ambient CO2 concentrations. Four CO2 exposure levels were used in the rings (ambient, 460, 560 and 660 μmol mol–1). Phenology and crop development, canopy surface temperature, above- and below-ground biomass were monitored during the growing season. Crop phenology was affected by elevated CO2, as the date of flowering was progressively anticipated in the 660, 560, 460 μmol mol–1 treatments. Crop development was not affected significantly as plant height, leaf area and the number of leaves per plant were the same in the four treatments. Elevated atmospheric CO2 levels had, instead, a significant effect on the accumulation of total nonstructural carbohydrates (TNC = soluble sugars + starch) in the leaves during a sunny day. Specific leaf area was decreased under elevated CO2 with a response that paralleled that of TNC concentrations. This reflected the occurrence of a progressive increase of photosynthetic rates and carbon assimilation in plants exposed to increasingly higher levels of atmospheric CO2. Tuber growth and final tuber yield were also stimulated by rising CO2 levels. When calculated by regression of tuber yield vs. the imposed levels of CO2concentration, yield stimulation was as large as 10% every 100 μmol mol–1 increase, which translated into over 40% enhancement in yield under 660 μmol mol–1. This was related to a higher number of tubers rather than greater mean tuber mass or size. Leaf senescence was accelerated under elevated CO2 and a linear relationship was found between atmospheric CO2 levels and leaf reflectance measured at 0.55 μm wavelength. We conclude that significant CO2 stimulation of yield has to be expected for potato under future climate scenarios, and that crop phenology will be affected as well.  相似文献   

10.
Carbon isotope discrimination (A), leaf conductance (gs), photosynthetic capacity, and plant growth were measured in well-watered, glasshouse-grown potato plants of clones from a cross made between diploid Solanum tuberosum and Solanum vernei. Clones showed significant differences (P < 0.001) in gs, Δ, stomatal density, root growth, and total dry matter production. Carbon isotope discrimination of genotypes was positively correlated (P < 0.001) with gs. There was no correlation between gs and stomatal density indicating that differences in gs reflected differences in stomatal aperture. Differences in rooting characteristics or in root/shoot ratio did not contribute to differences in gs or A. Genotypic differences in photosynthetic capacity were not statistically significant, and there was no correlation between A and photosynthetic capacity. Total dry matter production and A were positively correlated (P < 0.001) when differences in the time of plant emergence were included in the regression model. It is concluded that differences in A among potato genotypes is largely determined by gs, but confounding of gs and photosynthetic capacity reduces genotypic variation in A compared with that in gs. Total dry matter production is largely determined by processes other than carbon assimilation rate per unit area in individual leaves. Effective use of A as a character for selection in plant breeding depends on elucidating the effects that differences in stomatal characteristics have on crop production both in well-watered and in water-limited crops.  相似文献   

11.
Amylolytic activity is widely distributed in plants. In potato leaves ( Solanum tuberosum L.) the abundant amylolytic activity was found to be β-amylase (EC 3.2.1.2, a-1,4-D-glucan maltohydrolase). β-Amylase from potato leaves was purified to homogeneity for study of enzyme characteristics. The purification steps included ammonium sulphate precipitation, anion exchange chromatography, affinity chromatography and gel filtration. The end product of α-1,4-glucan degradation was maltose. The protein is a 111-kDa homo-dimer with a subunit molecular mass of 56 kDa and a pl of 5.6. The pH-optimum is 6.5 using p -nitrophenylmaltopentaoside (PNPG5) as substrate. The optimal temperature for hydrolysis is at 40°C. The enzyme is unstable at temperatures above 40°C. The Knt-value for PNPG5 is 0.73 m M and the activity is inhibited by cyclodextrins. At a concentration of 1 m M , β-cyclodextrin is a stronger inhibitor than α-cyclodextrin (68 and 20% inhibition, respectively). Branched glucans (e.g. starch and amylopectin) are superior substrates as compared to long, essentially unbranched glucans (e.g. amylose). This study of the catalytic properties of β-amylase from potato leaves indicates the importance of β-amylase as a starch degrading enzyme.  相似文献   

12.
Summary The role of ethylene in embryogenesis of cultured potato anthers was studied indirectly by testing various substances known to affect ethylene formation. The reducing agents ascorbic acid and L-cysteine prevented browning of anther cultures and significantly stimulated embryogenesis. Embryogenesis was also promoted by the use of the ethylene inhibitors AgNO3 and n-propyl-gallate and by the polyamines spermidine and putrescine. The use of the ethylene releasing compound ethrel significantly inhibited embryogenesis.Abbreviations MS Murashige & Skoog - PVP polyvinylpyrrolidone - MW molecular weight - ACC 1-aminocyclopropane-1-carboxylic acid - ethrel 2-chloroethylphosphonic acid (ethephon)  相似文献   

13.
The hormonal regulation of the consecutive steps in the formation of tubers on the potato plant ( Solanum tuberosum L.) is described and discussed. An integrated view of the complex regulation of the initiation and growth of stolons and tubers is presented, with special emphasis on the commonly observed lack of synchronization of the various steps in tuber formation within a plant.  相似文献   

14.
A method is described for using young field slugs Deroceras reticulatum (Muller) in a bioassay study of biochemical resistance of potato (Solanum tuberosum L.) cultivars to slugs. Tuber parts or an artificial diet were provided as food sources. Comparisons were made of feeding, survival and weight gain between the susceptible cultivar Maris Piper and the resistant cultivar Pentland Dell. Biochemical analyses were made of these two cultivars and the resistant cultivars Stormont Enterprise and Majestic. Comparisons of tuber sections and peelings as food sources indicated factors affecting growth were located in the surface layers of the tubers. Phenolics and glycoalkaloids were concentrated in the surface layers but the amounts were similar in the susceptible and resistant cultivars and the bioassays indicated that neither acting alone could explain resistance. The amounts and distribution of free amino acids also did not correlate with resistance although when supplied in the artificial diet they partly inhibited feeding. Proteinaceous inhibitors of slug gut proteolytic enzymes were present throughout the tubers but were not concentrated in the surface layers and the amounts were similar in the different cultivars thus they too did not explain the difference in susceptibility between the cultivars. Bioassays using acetone extracts (low molecular weight substances) and acetone powders (high molecular weight substances) either alone or in combination indicated that the resistant cultivar Pentland Dell contained a high molecular weight substance which together with a low molecular weight substance from either the same cultivar or the susceptible Maris Piper could confer resistance. Bioassays using protein extracts supplied in the presence or absence of chlorogenic acid indicated that this mechanism could comprise enzymic oxidation of phenolics. Assays of phenolase confirmed this since activity was highest in the outer layers of the tubers and was highest in the three resistant cultivars. Thus the chief resistance factor identified was high phenolase activity acting rapidly on phenolics when the slug first bites the tuber surface. The quantity of phenolics per se did not control the resistance. Thus while phenolics must be available, resistance is compatible with low blackening on cutting the tuber.  相似文献   

15.
Tuberising stolon tips of potato ( Solanum tuberosum L. cv. Record) accumulate starch and sucrose but the hexose content, particularly fructose, declines rapidly. Similar changes occur in the region 2 cm behind the swelling apex but the decline in glucose is far more pronounced than in the developing tuber. Tuberisation is characterised by an apparent switch from an invertase-dominated sucrolytic system (both acid and alkaline invertases [EC 3.2.1.26] are present) to one dominated by sucrose synthase (EC 2.4.1.13). Sucrose synthase and fructokinase (EC 2.7.1.4) activities were, at a maximum, ca 10- and 5-fold higher, respectively in the swelling stolon tip compared with the non-tuberising region. At the highest starch contents attained, the starch level in the young developing tuber was approximately double that in the adjacent non-tuberising stolon region. Immunoblots revealed that developmental changes in sucrose synthase. fructokinase and alkaline invertase polypeptides corresponded with enzyme activities. Antibodies raised against the N-terminal amino acid sequence of a soluble invertase purified from mature tubers did not detect significant quantities of a polypeptide in stolons and young, developing tubers. Antibodies raised against an in vitro expression product of an apoplastic invertase cloned from a leaf cDNA library detected a polypeptide in developing tubers but not in mature ones. However, expression of the protein did not correlate well with acid invertase activity during early tuber formation.  相似文献   

16.
Single-node cuttings of potato cultivars Jemseg, Katahdin, Russet Burbank and Superior were cultured on a multiplication medium containing MS salts and no growth regulators. Cultures were exposed to 8 h (SD) and 16 h (LD) photoperiodic regimes. The subsequent plantlets were excised and single node cuttings from each photoperiodic regime were placed under SD or LD on a second medium containing growth regulators which promoted tuberization. Production of microtubers was strongly influenced by genotype and by photoperiodic treatments. Superior produced stunted plantlets and some microtubers under SD conditions in the multiplication medium. The number of microtubers formed by Jemseg was not influenced by photoperiod. However, Katahdin and Russet Burbank formed fewer microtubers under LD-LD conditions compared to LD-SD, SD-SD and SD-LD regimes. Compared with the other regimes, LD-SD photoperiod generally promoted microtuber formation with larger diameters and significantly (p<0.05) greater fresh weight. The intensity of the tuberization stimulus was affected by daylength, and this was characterized by microtubers with secondary tubers, the growth of more than one axillary microtuber, and microtubers subtended by stolons. The maturity group of the potato cultivars and photoperiodic regime in vitro strongly influenced the production of microtubers. These results can be employed to adapt light regimes for multiplication and tuberization to the specific requirements for cultivars from different maturity groups, and thus increase the efficiency of potato multiplication protocols.  相似文献   

17.
Rhizomes of the marsh plant Acorus calamus (L.) and tubers of the flooding-intolerant Solanum tuberosum (L.) var. Bintje, both kept under strict anoxia, differ markedly in their fermentation properties. The fermentation capacities as measured by ADH and LDH activities and their respective product concentrations were estimated. While rhizomes of Acorus calamus, having high ADH and low LDH activities, accumulate mainly ethanol, tubers of Solanum tuberosum tend towards lactic acid fermentation. The total amount of adenine nucleotides is quite stable in Acorus calamus, whereas they show a sharp decline in S. tuberosum during the first 6h of anoxia. The adenylate energy charge of A. calamus recovers after a short initial drop (AEC > 0.8). AEC values of S. tuberosum decrease rapidly and remain at very low values (AEC ~ 0.3). Tuber tissues became soft and lost viability after about 48–72 h of anoxia at 25 °C. This might be due to tissue acidification and impaired energy metabolism, but not to the lack of energy reserves. Energy metabolism of A. calamus is well adapted to anoxia.  相似文献   

18.
Cytokinin free bases, ribosides and 9-glucosides were measured in stem node cultures of potato ( Solanum tuberosum L. cv. Ulster Sceptre) in the presence or absence of 1 μ M jasmonic acid (JA) to examine whether or not their changed levels were part of the JA-induced growth response. The enhanced growth response in JA-treated plantlets included: expanded root systems, extended leaf areas, increased number of nodes, and enlarged stem diameters. The protein analysis revealed a substantial decrease in a 62-kDa polypeptide. On a dry weight basis, the levels of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) and chlorophylls a and b were constant. The total concentration of endogenous cytokinins remained virtually the same in control and treated plantlets; but in JA-treated plantlets the amount of cytokinin free bases and cytokinin 9-glucosides decreased. In addition, the level of cytokinin ribosides was elevated. The ratio between active and inactive cytokinins increased from 1.2 to 2.1, which correlates with the enhanced growth of potato plantlets grown on 1 μ M JA. Thus the observed growth and developmental changes may be a consequence of the measured altered cytokinin level. However, significant morphological alterations of the potato plantlets treated with JA may also be a result of the changed critical cytokinin concentration or critical ratios of cytokinins to auxins and JA, rather than their absolute concentrations.  相似文献   

19.
Changes in gene expression that occur in the stolon tips of potato ( Solanum tuberosum L.) cv. Record during tuberisation were investigated. Protein extracts from stolon tips at various stages in the tuberisation process were analysed by two-dimensional gel electrophoresis. A number of quantitative and qualitative changes in polypeptide composition accompanied the very early stages of tuberisation. In vitro translation of RNA extracted from stolon tips also revealed quantitative and qualitative changes associated with tuberisation. Immunoblotting of protein extracts with monoclonal antibodies raised against α- and β-tubulin showed quantitative changes in the relative level of β-tubulin, but not α-tubulin, as the stolon tips tuberised. Changes in the pattern of α-tubulin isotype expression were shown to occur at early stages in the tuberisation process.  相似文献   

20.
In 1992 and 1993, potato cultivars Cara, Estima, Pentland Dell, Pentland Javelin and Torridon were assessed in all possible pairings in three consecutive drills, such that one member of the pair (the cultivar) was the centre-drill, and the other member (the neighbour) was in the two adjacent drills. Each year the trial was a randomised complete block design with four replicates. Inter-cultivar competition was present for height, total tuber yield, ware yield and dry matter content, but not for emergence and maturity. Cultivar heights and dry matter contents under inter-cultivar competition and in pure-stands were highly correlated, whereas for total and ware yields, the rankings of cultivars in pure-stands were different from those under competition. Pure-stand yields were predicted for the two years separately because of year × cultivar and year × neighbour interactions. When the average total yield of the outer-drills was used as a covariate to adjust centre-drill yields to pure-stands, predicted yields were closer to those observed than were yields under competition, but there was little improvement in the correlations. In contrast, not only were the predicted values even closer to the observed ones when based on individual neighbour effects, the correlations were much higher (r = 0.76–0.94). Unfortunately, in plant breeding trials with large numbers of entries, precise estimation of individual neighbour effects would require an unrealistically large number of replicates. Hence, for the final stages of yield assessment of new cultivars, it is still desirable to use multiple-drill plots and to discard the outside drills where inter-cultivar competition can occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号