首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasporin-2, a new crystal protein derived from noninsecticidal and nonhemolytic Bacillus thuringiensis, recognizes and kills human liver and colon cancer cells as well as some classes of human cultured cells. Here we report that a potent proteinase K-resistant parasporin-2 toxin shows specific binding to and a variety of cytocidal effects against human hepatocyte cancer cells. Cleavage of the N-terminal region of parasporin-2 was essential for the toxin activity, whereas C-terminal digestion was required for rapid cell injury. Protease-activated parasporin-2 induced remarkable morphological alterations, cell blebbing, cytoskeletal alterations, and mitochondrial and endoplasmic reticulum fragmentation. The plasma membrane permeability was increased immediately after the toxin treatment and most of the cytoplasmic proteins leaked from the cells, whereas mitochondrial and endoplasmic reticulum proteins remained in the intoxicated cells. Parasporin-2 selectively bound to cancer cells in slices of liver tumor tissues and susceptible human cultured cells and became localized in the plasma membrane until the cells were damaged. Thus, parasporin-2 acts as a cytolysin that permeabilizes the plasma membrane with target cell specificity and subsequently induces cell decay.  相似文献   

2.
Pro-parasporin-1 is a parasporal inclusion protein of the non-insecticidal Bacillus thuringiensis strain A1190. Cytotoxic fragments, named parasporin-1, were generated from pro-parasporin-1 by trypsin digestion. Parasporin-1 was purified by a combination of chromatography procedures based on the cytotoxic activity to HeLa cells. Two different fragments of 15-kDa and 56-kDa were detected in the purified parasporin-1 fraction. These fragments were tightly associated with each other and could not be separated by chromatography under conditions that preserve cytotoxic activity, indicating that the active form of parasporin-1 is a heterodimer of the 15- and 56-kDa fragments. Amino acid sequencing and MALDI-TOF mass spectrometric analysis revealed that parasporin-1 is generated from pro-parasporin-1 by trypsin digestion at Arg 93 and Arg 231. Of 12 human cell lines tested, parasporin-1 showed strong cytotoxicity to four cell lines derived from cancer tissues, but low to no cytotoxicity to the other cell lines. The time-courses of cytotoxicity indicated that the mode of action of parasporin-1 to sensitive cells differs from that shown for previously isolated cytotoxic proteins from Bacillus thuringiensis, Cyt proteins, and other bacterial pore-forming toxins. Thus, parasporin-1 is a novel cytotoxic protein to human cancer cells produced by B. thuringiensis, and may be useful as a tool to recognize and destroy specific cancer cells.  相似文献   

3.
Parasporin-2 is a protein toxin that is isolated from parasporal inclusions of the Gram-positive bacterium Bacillus thuringiensis. Although B. thuringiensis is generally known as a valuable source of insecticidal toxins, parasporin-2 is not insecticidal, but has a strong cytocidal activity in liver and colon cancer cells. The 37-kDa inactive nascent protein is proteolytically cleaved to the 30-kDa active form that loses both the N-terminal and the C-terminal segments. Accumulated cytological and biochemical observations on parasporin-2 imply that the protein is a pore-forming toxin. To confirm the hypothesis, we have determined the crystal structure of its active form at a resolution of 2.38 Å. The protein is unusually elongated and mainly comprises long β-strands aligned with its long axis. It is similar to aerolysin-type β-pore-forming toxins, which strongly reinforce the pore-forming hypothesis. The molecule can be divided into three domains. Domain 1, comprising a small β-sheet sandwiched by short α-helices, is probably the target-binding module. Two other domains are both β-sandwiches and thought to be involved in oligomerization and pore formation. Domain 2 has a putative channel-forming β-hairpin characteristic of aerolysin-type toxins. The surface of the protein has an extensive track of exposed side chains of serine and threonine residues. The track might orient the molecule on the cell membrane when domain 1 binds to the target until oligomerization and pore formation are initiated. The β-hairpin has such a tight structure that it seems unlikely to reform as postulated in a recent model of pore formation developed for aerolysin-type toxins. A safety lock model is proposed as an inactivation mechanism by the N-terminal inhibitory segment.  相似文献   

4.
Pore-forming toxins constitute a class of potent virulence factors that attack their host membrane in a two- or three-step mechanism. After binding to the membrane, often aided by specific receptors, they form pores in the membrane. Pore formation either unfolds a cytolytic activity in itself or provides a pathway to introduce enzymes into the cells that act upon intracellular proteins. The elucidation of the pore-forming mechanism of many of these toxins represents a major research challenge. As the toxins often refold after entering the membrane, their structure in the membrane is unknown, and key questions such as the stoichiometry of individual pores and their mechanism of oligomerization remain unanswered. In this study, we used single subunit counting based on fluorescence spectroscopy to explore the oligomerization process of the Cry1Aa toxin of Bacillus thuringiensis. Purified Cry1Aa toxin molecules labeled at different positions in the pore-forming domain were inserted into supported lipid bilayers, and the photobleaching steps of single fluorophores in the fluorescence time traces were counted to determine the number of subunits of each oligomer. We found that toxin oligomerization is a highly dynamic process that occurs in the membrane and that tetramers represent the final form of the toxins in a lipid bilayer environment.  相似文献   

5.
Bacillus thuringiensis crystal proteins, well known to be toxic to certain insects but not pathogenic to mammals, are used as insecticidal proteins in agriculture and forest management. We here identified a crystal protein that is non-insecticidal and non-hemolytic but has strong cytocidal activity against various human cells with a markedly divergent target specificity, e.g. highly cytotoxic to HepG2 and Jurkat and less cytotoxic to the normal hepatocyte (HC) and HeLa. In slices of liver and colon cancer tissues, the toxin protein preferentially killed the cancer cells, leaving other cells unaffected. The cytocidal effect of the protein is non-apoptotic with swelling and fragmentation of the susceptible cells, although the apoptotic process does occur when the cell damage proceeded slowly. The amino acid sequence deduced from the nucleotide sequence of the cloned gene of the protein has little sequence homology with the insecticidal crystal proteins of B. thuringiensis. These observations raise the presence of a new group of the B. thuringiensis toxin and the possibility of new applications for the protein in the medical field.  相似文献   

6.
Parasporin-1 is a novel non-insecticidal inclusion protein from Bacillus thuringiensis that is cytotoxic to specific mammalian cells. In this study, we investigated the effects of parasporin-1 on toxin-sensitive cell lines to elucidate the cytotoxic mechanism of parasporin-1. Parasporin-1 is not a membrane pore-forming toxin as evidenced by measurements of lactate dehydrogenase release, propidium iodide penetration, and membrane potential in parasporin-1-treated cells. Parasporin-1 decreased the level of cellular protein and DNA synthesis in parasporin-1-sensitive HeLa cells. The earliest change observed in cells treated with this toxin was a rapid elevation of the intracellular free-Ca(2+) concentration; increases in the intracellular Ca(2+) levels were observed 1-3 min following parasporin-1 treatment. Using four different cell lines, we found that the degree of cellular sensitivity to parasporin-1 was positively correlated with the size of the increase in the intracellular Ca(2+) concentration. The toxin-induced elevation of the intracellular Ca(2+) concentration was markedly decreased in low-Ca(2+) buffer and was not observed in Ca(2+)-free buffer. Accordingly, the cytotoxicity of parasporin-1 decreased in the low-Ca(2+) buffer and was restored by the addition of Ca(2+) to the extracellular medium. Suramin, which inhibits trimeric G-protein signaling, suppressed both the Ca(2+) influx and the cytotoxicity of parasporin-1. In parasporin-1-treated HeLa cells, degradation of pro-caspase-3 and poly(ADP-ribose) polymerase was observed. Furthermore, synthetic caspase inhibitors blocked the cytotoxic activity of parasporin-1. These results indicate that parasporin-1 activates apoptotic signaling in these cells as a result of the increased Ca(2+) level and that the Ca(2+) influx is the first step in the pathway that underlies parasporin-1 toxicity.  相似文献   

7.
Cholera toxin (CT) travels from the plasma membrane of intestinal cells to the endoplasmic reticulum (ER) where a portion of the A-subunit, the A1 chain, crosses the membrane into the cytosol to cause disease. A related toxin, LTIIb, binds to intestinal cells but does not cause toxicity. Here, we show that the B-subunit of CT serves as a carrier for the A-subunit to the ER where disassembly occurs. The B-subunit binds to gangliosides in lipid rafts and travels with the ganglioside to the ER. In many cells, LTIIb follows a similar pathway, but in human intestinal cells it binds to a ganglioside that fails to associate with lipid rafts and it is sorted away from the retrograde pathway to the ER. Our results explain why LTIIb does not cause disease in humans and suggest that gangliosides with high affinity for lipid rafts may provide a general vehicle for the transport of toxins to the ER.  相似文献   

8.
Clostridium perfringens ε-toxin is produced by toxinotypes B and D strains. The toxin is the aetiological agent of dysentery in newborn lambs but is also associated with enteritis and enterotoxaemia in goats, calves and foals. It is considered to be a potential biowarfare or bioterrorism agent by the US Government Centers for Disease Control and Prevention. The relatively inactive 32.9 kDa prototoxin is converted to active mature toxin by proteolytic cleavage, either by digestive proteases of the host, such as trypsin and chymotrypsin, or by C. perfringens λ-protease. In vivo, the toxin appears to target the brain and kidneys, but relatively few cell lines are susceptible to the toxin, and most work has been carried out using Madin-Darby canine kidney (MDCK) cells. The binding of ε-toxin to MDCK cells and rat synaptosomal membranes is associated with the formation of a stable, high molecular weight complex. The crystal structure of ε-toxin reveals similarity to aerolysin from Aeromonas hydrophila, parasporin-2 from Bacillus thuringiensis and a lectin from Laetiporus sulphureus. Like these toxins, ε-toxin appears to form heptameric pores in target cell membranes. The exquisite specificity of the toxin for specific cell types suggests that it binds to a receptor found only on these cells.  相似文献   

9.
Lipid rafts are characterized by their insolubility in nonionic detergents such as Triton X-100 at 4 degrees C. They have been studied in mammals, where they play critical roles in protein sorting and signal transduction. To understand the potential role of lipid rafts in lepidopteran insects, we isolated and analyzed the protein and lipid components of these lipid raft microdomains from the midgut epithelial membrane of Heliothis virescens and Manduca sexta. Like their mammalian counterparts, H. virescens and M. sexta lipid rafts are enriched in cholesterol, sphingolipids, and glycosylphosphatidylinositol-anchored proteins. In H. virescens and M. sexta, pretreatment of membranes with the cholesterol-depleting reagent saponin and methyl-beta-cyclodextrin differentially disrupted the formation of lipid rafts, indicating an important role for cholesterol in lepidopteran lipid rafts structure. We showed that several putative Bacillus thuringiensis Cry1A receptors, including the 120- and 170-kDa aminopeptidases from H. virescens and the 120-kDa aminopeptidase from M. sexta, were preferentially partitioned into lipid rafts. Additionally, the leucine aminopeptidase activity was enriched approximately 2-3-fold in these rafts compared with brush border membrane vesicles. We also demonstrated that Cry1A toxins were associated with lipid rafts, and that lipid raft integrity was essential for in vitro Cry1Ab pore forming activity. Our study strongly suggests that these microdomains might be involved in Cry1A toxin aggregation and pore formation.  相似文献   

10.
Bacillus thuringiensis strain A1462 produced two parasporal inclusion proteins with a molecular mass of 88 kDa that were converted to 64-kDa toxins when activated by proteinase K digestion. Both toxins exhibited strong cytocidal activity against two human cancer cell lines, HL60 (myeloid leukemia cells) and HepG2 (liver cancer cells), while low or no toxicities were observed against 11 human and three mammalian cell lines, including four non-cancer cell lines. The cytotoxicity of both toxins on susceptible cells was characterized by rapid cell swelling. Gene cloning experiments provided two novel genes encoding 88-kDa Cry proteins, Cry41Aa and Cry41Ab. The amino acid sequences of the two proteins contain five block regions commonly conserved in B. thuringiensis insecticidal Cry proteins. This is the first report of the occurrence of typical three-domain Cry proteins with cytocidal activity preferential for cancer cells.  相似文献   

11.
The specific role of cadherin receptors in cytotoxicity involving Cry toxins of Bacillus thuringiensis and their interactions with cell membrane has not been defined. To elucidate the involvement of toxin-membrane and toxin-receptor interactions in cytotoxicity, we established a cell-based system utilizing High Five insect cells stably expressing BT-R1, the cadherin receptor for Cry1Ab toxin. Cry1Ab toxin is incorporated into cell membrane in both oligomeric and monomeric form. Monomeric toxin binds specifically to BT-R1 whereas incorporation of oligomeric toxin is nonspecific and lipid dependent. Toxin oligomers in the cell membrane do not produce lytic pores and do not kill insect cells. Rather, cell death correlates with binding of the Cry1Ab toxin monomer to BT-R1, which apparently activates a Mg2+-dependent cellular signaling pathway.  相似文献   

12.
Parasporin-4 (PS4) is a cytotoxic protein produced by Bacillus thuringiensis strain A1470. It exhibits specific cytotoxicity against human cancer cell lines, CACO-2, Sawano, and MOLT-4 cells, in particular. When cells were administrated with PS4, cell swelling and nuclear shrinkage were induced, and, the ballooned cells burst within 24 h. PSI-BLAST search showed that the protein shared homology not only with B. thuringiensis Cry toxins but also with aerolysin-type β-pore-forming toxins. Circular dichroism measurements suggested that PS4 was a β-sheet-rich protein. PS4 aggregated into oligomers on the plasma membrane of PS4-susceptible CACO-2 cells, but not on that of PS4-resistant HeLa cells. Leakage of lactate dehydrogenase and influx of extracellular FITC-dextrans were observed only in susceptible cells. The activation of effectors caspase 3 and/or 7 was not observed in PS4-treated CACO-2 cells. It was shown that cytotoxicity of the PS4 against CACO-2 cells was exhibited when treated by cyclodextrin which induces cholesterol depletion. These results suggest that PS4 is a unique β-pore-forming toxin with a cholesterol-independent activity.  相似文献   

13.
Anthrax toxin rafts into cells   总被引:2,自引:0,他引:2  
Anthrax toxin binds to a plasma membrane receptor and after endocytosis exerts its deadly effects on the cell. Until now, however, the mechanism of initial toxin uptake was unknown. In this issue, Abrami et al. (2003) demonstrate that toxin oligomerization clusters the anthrax receptor into lipid rafts and this complex is internalized via the clathrin-dependent pathway.  相似文献   

14.
Cry toxins from Bacillus thuringiensis are used for insect control. Their primary action is to lyse midgut epithelial cells. In this review we will summarize recent findings on the Cry toxin-receptor interaction and the role of receptor recognition in their mode of action. Cry toxins interact sequentially with multiple receptors. In lepidopteran insects, Cry1A monomeric toxins interact with the first receptor and this interaction triggers oligomerization of the toxins. The oligomer then interacts with second receptor inducing insertion into membrane microdomains and larval death. In the case of mosquitocidal toxins, Cry and Cyt toxins play a part. These toxins have a synergistic effect and Cyt1Aa overcomes Cry toxin resistance. Recently, it was proposed that Cyt1Aa synergizes or suppresses resistance to Cry toxins by functioning as a membrane-bound receptor for Cry toxin.  相似文献   

15.
Pore-forming toxins are biological weapons produced by a variety of living organisms, particularly bacteria but also by insects, reptiles, and invertebrates. These proteins affect the cell membrane of their target, disrupting permeability and leading eventually to cell death. The pore-forming toxins typically transform from soluble, monomeric proteins to oligomers that form transmembrane channels. The Cry toxins produced by Bacillus thuringiensis are widely used as insecticides. These proteins have been recognized as pore-forming toxins, and their primary action is to lyse midgut epithelial cells in their target insect. To exert their toxic effect, a prepore oligomeric intermediate is formed leading finally to membrane-inserted oligomeric pores. To understand the role of Cry oligomeric pre-pore formation in the insecticidal activity we isolated point mutations that affected toxin oligomerization but not their binding with the cadherin-like, Bt-R(1) receptor. We show the helix alpha-3 in domain I contains sequences that could form coiled-coil structures important for oligomerization. Some single point mutants in this helix bound Bt-R(1) receptors with similar affinity as the wild-type toxin, but were affected in oligomerization and were severally impaired in pore formation and toxicity against Manduca sexta larvae. These data indicate the pre-pore oligomer and the toxin pore formation play a major role in the intoxication process of Cry1Ab toxin in insect larvae.  相似文献   

16.
Little is known about the organization of lipids in biomembranes. Lipid rafts are defined as sphingolipid- and cholesterol-rich clusters in the membrane. Details of the lipid distribution of lipid rafts are not well characterized mainly because of a lack of appropriate probes. Ganglioside GM1-specific protein, cholera toxin, has long been the only lipid probe of lipid rafts. Recently it was shown that earthworm toxin, lysenin, specifically recognizes sphingomyelin-rich membrane domains. Binding of lysenin to sphingomyelin is accompanied by the oligomerization of the toxin that leads to pore formation in the target membrane. In this study, we generated a truncated lysenin mutant that does not oligomerize and thus is non-toxic. Using this mutant lysenin, we showed that plasma membrane sphingomyelin-rich domains are spatially distinct from ganglioside GM1-rich membrane domains in Jurkat T cells. Like T cell receptor activation and cross-linking of GM1, cross-linking of sphingomyelin induced calcium influx and ERK phosphorylation in the cell. However, unlike CD3 or GM1, cross-linking of sphingomyelin did not induce significant protein tyrosine phosphorylation. Combination of lysenin and sphingomyelinase treatment suggested the involvement of G-protein-coupled receptor in sphingomyelin-mediated signal transduction. These results thus suggest that the sphingomyelin-rich domain provides a functional signal cascade platform that is distinct from those provided by T cell receptor or GM1. Our study therefore elucidates the spatial and functional heterogeneity of lipid rafts.  相似文献   

17.
Bacillus thuringiensis produces insecticidal Cry proteins that are active against different insect species. The primary action of Cry toxins is to lyse midgut epithelial cells in the target insect by forming lytic pores on the apical membrane. After interaction with cadherin receptor, Cry proteins undergo conformational changes from a monomeric structure to a pre-pore-oligomeric form that is able to interact with a second GPI-anchored aminopeptidase-N receptor and then insert into lipid membranes. Here, we review the recent advances in the understanding of the structural changes presented by Cry1Ab toxin upon membrane insertion. Based on analysis of the Trp fluorescence of pure monomeric and oligomeric Cry1Ab structures in solution and in membrane-bound state we reported that oligomerization caused 27% reduction of Trp exposed to the solvent. After membrane insertion there is another conformational change that allows an additional rearrangement of the Trp residues resulting in a total protection of these residues from exposure to the solvent. The oligomeric structure is membrane insertion competent since more than 96% of the Cry1Ab oligomer inserts into the membrane as a function of lipid:protein ratio, in contrast to the monomer of which only 5-10%, inserts into the membrane. Finally, analysis of the stability of monomeric, pre-pore and pore structures of Cry1Ab toxin after urea and thermal denaturation suggested that a more flexible conformation could be necessary for membrane insertion and this flexible structure is obtained by toxin oligomerization and by alkaline pH. Domain I is involved in the intermolecular interaction within the oligomeric Cry1Ab and this domain is inserted into the membrane in the membrane-inserted state.  相似文献   

18.
A novel gene encoding a leukemic cell-killing parasporal protein, designated parasporin-4, was cloned from an isolate of Bacillus thuringiensis serovar shandongiensis. The amino acid sequence of the parasporin-4, as deduced from the gene sequence, had low-level homologies of <30% with the established B. thuringiensis Cry proteins including the three known parasporins. When the gene was expressed in a recombinant of Escherichia coli BL21(DE3), the parasporin-4 formed intracellular inclusion bodies. Alkali-solubilized and proteinase K-activated inclusion protein exhibited strong cytotoxic activity against human leukemic T cells (MOLT-4) and weak for normal T cells, but no adverse effect on human uterus cervix cancer cells (HeLa).  相似文献   

19.
Lipid rafts are plasma membrane platforms mediating signal transduction pathways for cellular proliferation, differentiation and apoptosis. Here, we show that membrane fluidity was increased in HeLa cells following treatment with ginsenoside Rh2 (Rh2), as determined by cell staining with carboxy-laurdan (C-laurdan), a two-photon dye designed for measuring membrane hydrophobicity. In the presence of Rh2, caveolin-1 appeared in non-raft fractions after sucrose gradient ultracentrifugation. In addition, caveolin-1 and GM1, lipid raft landmarkers, were internalized within cells after exposure to Rh2, indicating that Rh2 might disrupt lipid rafts. Since cholesterol overloading, which fortifies lipid rafts, prevented an increase in Rh2-induced membrane fluidity, caveolin-1 internalization and apoptosis, lipid rafts appear to be essential for Rh2-induced apoptosis. Moreover, Rh2-induced Fas oligomerization was abolished following cholesterol overloading, and Rh2-induced apoptosis was inhibited following treatment with siRNA for Fas. This result suggests that Rh2 is a novel lipid raft disruptor leading to Fas oligomerization and apoptosis.  相似文献   

20.
Detergent-resistant lipid rafts are required for the generation of Abeta as they concentrate not only amyloid precursor protein (APP), but also the beta- and gamma-secretase that convert APP to Abeta. Recently, Abeta has been shown to be oligomerized, which results in neuronal cytotoxicity and synaptic failure. In this study, we have demonstrated that Abeta oligomers appeared immediately after the incubation of Abeta with lipid rafts isolated from the brain tissues of rats, and were converted into few Abeta fibrils, even after longer periods of incubation. The oligomerization of Abeta was not abolished after the brain lipid rafts were treated with heat, or with protease K, implying that the lipid raft proteins were determined not to be prerequisites for Abeta oligomerization. The cholesterol present in the lipid rafts might not be essential to Abeta oligomerization because Abeta oligomerization was not prevented after the cholesterol was removed from the lipid rafts with methyl-beta-cyclodextrin (MbetaCD). The Abeta oligomerization was accelerated by the application of lipid rafts isolated from ganglioside-rich cells, C2C12 cells, whereas this was not observed with the lipid rafts isolated from ganglioside-poor cells SK-N-MC and HeLa cells. In addition, lipid raft-induced Abeta oligomerization was shown to be inhibited in CHO-K1 cells which were defective with regard to ganglioside biosynthesis. This indicates that Abeta oligomerization requires gangliosides that are enriched in the lipid rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号