首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High frequency firing in mammalian neurons requires ultra-rapid delayed rectifier potassium currents generated by homomeric or heteromeric assemblies of Kv3.1 and Kv3.2 potassium channel alpha subunits. Kv3.1 alpha subunits can also form slower activating channels by coassembling with MinK-related peptide 2 (MiRP2), a single transmembrane domain potassium channel ancillary subunit. Here, using channel subunits cloned from rat and expressed in Chinese hamster ovary cells, we show that modulation by MinK, MiRP1, and MiRP2 is a general mechanism for slowing of Kv3.1 and Kv3.2 channel activation and deactivation and acceleration of inactivation, creating a functionally diverse range of channel complexes. MiRP1 also negatively shifts the voltage dependence of Kv3.1 and Kv3.2 channel activation. Furthermore, MinK, MiRP1, and MiRP2 each form channels with Kv3.1-Kv3.2 heteromers that are kinetically distinct from one another and from MiRP/homomeric Kv3 channels. The findings illustrate a mechanism for dynamic expansion of the functional repertoire of Kv3.1 and Kv3.2 potassium currents and suggest roles for these alpha subunits outside the scope of sustained rapid neuronal firing.  相似文献   

2.
The co-assembly of KCNQ1 with KCNE1 produces IKS, a K+ current, crucial for the repolarization of the cardiac action potential. Mutations in these channel subunits lead to life-threatening cardiac arrhythmias. However, very little is known about the gating mechanisms underlying KCNQ1 channel activation. Shaker channels have provided a powerful tool to establish the basic gating mechanisms of voltage-dependent K+ channels, implying prior independent movement of all four voltage sensor domains (VSDs) followed by channel opening via a last concerted cooperative transition. To determine the nature of KCNQ1 channel gating, we performed a thermodynamic mutant cycle analysis by constructing a concatenated tetrameric KCNQ1 channel and by introducing separately a gain and a loss of function mutation, R231W and R243W, respectively, into the S4 helix of the VSD of one, two, three, and four subunits. The R231W mutation destabilizes channel closure and produces constitutively open channels, whereas the R243W mutation disrupts channel opening solely in the presence of KCNE1 by right-shifting the voltage dependence of activation. The linearity of the relationship between the shift in the voltage dependence of activation and the number of mutated subunits points to an independence of VSD movements, with each subunit incrementally contributing to channel gating. Contrary to Shaker channels, our work indicates that KCNQ1 channels do not experience a late cooperative concerted opening transition. Our data suggest that KCNQ1 channels in both the absence and the presence of KCNE1 undergo sequential gating transitions leading to channel opening even before all VSDs have moved.  相似文献   

3.
Voltage-gated K+ channel activation is proposed to result from simultaneous bending of all S6 segments away from the central axis, enlarging the aperture of the pore sufficiently to permit diffusion of K+ into the water-filled central cavity. The hinge position for the bending motion of each S6 segment is proposed to be a Gly residue and/or a Pro-Val-Pro motif in Kv1-Kv4 channels. The KCNQ1 (Kv7.1) channel has Ala-336 in the Gly-hinge position and Pro-Ala-Gly. Here we show that mutation of Ala-336 to Gly in KCNQ1 increased current amplitude and shifted the voltage dependence of activation to more negative potentials, consistent with facilitation of hinge activity that favors the open state. In contrast, mutation of Ala-336 to Cys or Thr shifted the voltage dependence of activation to more positive potentials and reduced current amplitude. Mutation of the putative Gly hinge to Ala in KCNQ2 (Kv7.2) abolished channel function. Mutation-dependent changes in current amplitude, but not kinetics, were found in heteromeric KCNQ1/KCNE1 channels. Mutation of the Pro or Gly of the Pro-Ala-Gly motif to Ala abolished KCNQ1 function and introduction of Gly in front of the Ala-mutations partially recovered channel function, suggesting that flexibility at the PAG is important for channel activation.  相似文献   

4.
Most voltage-gated potassium (Kv) channels undergo C-type inactivation during sustained depolarization. The voltage dependence and other mechanistic aspects of this process are debated, and difficult to elucidate because of concomitant voltage-dependent activation. Here, we demonstrate that MinK-KCNQ1 (IKs) channels with an S6-domain mutation, F340W in KCNQ1, exhibit constitutive activation but voltage-dependent C-type inactivation. F340W-IKs inactivation was sensitive to extracellular cation concentration and species, and it altered ion selectivity, suggestive of pore constriction. The rate and extent of F340W-IKs inactivation and recovery from inactivation were voltage-dependent with physiologic intracellular ion concentrations, and in the absence or presence of external K+, with an estimated gating charge, zi, of ∼1. Finally, double-mutant channels with a single S4 charge neutralization (R231A,F340W-IKs) exhibited constitutive C-type inactivation. The results suggest that F340W-IKs channels exhibit voltage-dependent C-type inactivation involving S4, without the necessity for voltage-dependent opening, allosteric coupling to voltage-dependent S6 transitions occurring during channel opening, or voltage-dependent changes in ion occupancy. The data also identify F340 as a critical hub for KCNQ1 gating processes and their modulation by MinK, and present a unique system for further mechanistic studies of the role of coupling of C-type inactivation to S4 movement, without contamination from voltage-dependent activation.  相似文献   

5.
Regulation of the Kv2.1 Potassium Channel by MinK and MiRP1   总被引:1,自引:0,他引:1  
Kv2.1 is a voltage-gated potassium (Kv) channel α-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single–transmembrane domain ancillary subunits that form complexes with Kv channel α-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N–MinK and S74L–MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1–Kv2.1 complexes, channels formed with M54T– or I57T–MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Z. A. McCrossan and T. K. Roepke have contributed equally to this work.  相似文献   

6.
Chemical openers for KCNQ potassium channels are useful probes both for understanding channel gating and for developing therapeutics. The five KCNQ isoforms (KCNQ1 to KCNQ5, or Kv7.1 to Kv7.5) are differentially localized. Therefore, the molecular specificity of chemical openers is an important subject of investigation. Native KCNQ1 normally exists in complex with auxiliary subunits known as KCNE. In cardiac myocytes, the KCNQ1-KCNE1 (IsK or minK) channel is thought to underlie the I(Ks) current, a component critical for membrane repolarization during cardiac action potential. Hence, the molecular and pharmacological differences between KCNQ1 and KCNQ1-KCNE1 channels have been important topics. Zinc pyrithione (ZnPy) is a newly identified KCNQ channel opener, which potently activates KCNQ2, KCNQ4, and KCNQ5. However, the ZnPy effects on cardiac KCNQ1 potassium channels remain largely unknown. Here we show that ZnPy effectively augments the KCNQ1 current, exhibiting an increase in current amplitude, reduction of inactivation, and slowing of both activation and deactivation. Some of these are reminiscent of effects by KCNE1. In addition, neither the heteromultimeric KCNQ1-KCNE1 channels nor native I(Ks) current displayed any sensitivity to ZnPy, indicating that the static occupancy by a KCNE subunit desensitizes the reversible effects by a chemical opener. Site-directed mutagenesis of KCNQ1 reveals that residues critical for the potentiation effects by either ZnPy or KCNE are clustered together in the S6 region overlapping with the critical gating determinants. Thus, the convergence of potentiation effects and molecular determinants critical for both an auxiliary subunit and a chemical opener argue for a mechanistic overlap in causing potentiation.  相似文献   

7.
The voltage-sensing domain of voltage-gated channels is comprised of four transmembrane helices (S1–S4), with conserved positively charged residues in S4 moving across the membrane in response to changes in transmembrane voltage. Although it has been shown that positive charges in S4 interact with negative countercharges in S2 and S3 to facilitate protein maturation, how these electrostatic interactions participate in channel gating remains unclear. We studied a mutation in Kv7.1 (also known as KCNQ1 or KvLQT1) channels associated with long QT syndrome (E1K in S2) and found that reversal of the charge at E1 eliminates macroscopic current without inhibiting protein trafficking to the membrane. Pairing E1R with individual charge reversal mutations of arginines in S4 (R1–R4) can restore current, demonstrating that R1–R4 interact with E1. After mutating E1 to cysteine, we probed E1C with charged methanethiosulfonate (MTS) reagents. MTS reagents could not modify E1C in the absence of KCNE1. With KCNE1, (2-sulfonatoethyl) MTS (MTSES) could modify E1C, but [2-(trimethylammonium)ethyl] MTS (MTSET)+ could not, confirming the presence of a positively charged environment around E1C that allows approach by MTSES but repels MTSET+. We could change the local electrostatic environment of E1C by making charge reversal and/or neutralization mutations of R1 and R4, such that MTSET+ modified these constructs depending on activation states of the voltage sensor. Our results confirm the interaction between E1 and the fourth arginine in S4 (R4) predicted from open-state crystal structures of Kv channels and reveal an E1–R1 interaction in the resting state. Thus, E1 engages in electrostatic interactions with arginines in S4 sequentially during the gating movement of S4. These electrostatic interactions contribute energetically to voltage-dependent gating and are important in setting the limits for S4 movement.  相似文献   

8.
Although crystal structures of various voltage-gated K+ (Kv) and Na+ channels have provided substantial information on the activated conformation of the voltage-sensing domain (VSD), the topology of the VSD in its resting conformation remains highly debated. Numerous studies have investigated the VSD resting state in the Kv Shaker channel; however, few studies have explored this issue in other Kv channels. Here, we investigated the VSD resting state of KCNQ2, a K+ channel subunit belonging to the KCNQ (Kv7) subfamily of Kv channels. KCNQ2 can coassemble with the KCNQ3 subunit to mediate the IM current that regulates neuronal excitability. In humans, mutations in KCNQ2 are associated with benign neonatal forms of epilepsy or with severe epileptic encephalopathy. We introduced cysteine mutations into the S4 transmembrane segment of the KCNQ2 VSD and determined that external application of Cd2+ profoundly reduced the current amplitude of S4 cysteine mutants S195C, R198C, and R201C. Based on reactivity with the externally accessible endogenous cysteine C106 in S1, we infer that each of the above S4 cysteine mutants forms Cd2+ bridges to stabilize a channel closed state. Disulfide bonds and metal bridges constrain the S4 residues S195, R198, and R201 near C106 in S1 in the resting state, and experiments using concatenated tetrameric constructs indicate that this occurs within the same VSD. KCNQ2 structural models suggest that three distinct resting channel states have been captured by the formation of different S4–S1 Cd2+ bridges. Collectively, this work reveals that residue C106 in S1 can be very close to several N-terminal S4 residues for stabilizing different KCNQ2 resting conformations.  相似文献   

9.
Voltage-gated potassium (Kv) channels derive their voltage sensitivity from movement of gating charges in voltage-sensor domains (VSDs). The gating charges translocate through a physical pathway in the VSD to open or close the channel. Previous studies showed that the gating charge pathways of Shaker and Kv1.2-2.1 chimeric channels are occluded, forming the structural basis for the focused electric field and gating charge transfer center. Here, we show that the gating charge pathway of the voltage-gated KCNQ2 potassium channel, activity reduction of which causes epilepsy, can accommodate various small molecule ligands. Combining mutagenesis, molecular simulation and electrophysiological recording, a binding model for the probe activator, ztz240, in the gating charge pathway was defined. This information was used to establish a docking-based virtual screening assay targeting the defined ligand-binding pocket. Nine activators with five new chemotypes were identified, and in vivo experiments showed that three ligands binding to the gating charge pathway exhibit significant anti-epilepsy activity. Identification of various novel activators by virtual screening targeting the pocket supports the presence of a ligand-binding site in the gating charge pathway. The capability of the gating charge pathway to accommodate small molecule ligands offers new insights into the gating charge pathway of the therapeutically relevant KCNQ2 channel.  相似文献   

10.
The members of the voltage-dependent potassium channel family subserve a variety of functions and are expected to have voltage sensors with different sensitivities. The Shaker channel of Drosophila, which underlies a transient potassium current, has a high voltage sensitivity that is conferred by a large gating charge movement, approximately 13 elementary charges. A Shaker subunit's primary voltage-sensing (S4) region has seven positively charged residues. The Shab channel and its homologue Kv2.1 both carry a delayed-rectifier current, and their subunits have only five positively charged residues in S4; they would be expected to have smaller gating-charge movements and voltage sensitivities. We have characterized the gating currents and single-channel behavior of Shab channels and have estimated the charge movement in Shaker, Shab, and their rat homologues Kv1.1 and Kv2.1 by measuring the voltage dependence of open probability at very negative voltages and comparing this with the charge-voltage relationships. We find that Shab has a relatively small gating charge, approximately 7.5 e(o). Surprisingly, the corresponding mammalian delayed rectifier Kv2.1, which has the same complement of charged residues in the S2, S3, and S4 segments, has a gating charge of 12.5 e(o), essentially equal to that of Shaker and Kv1.1. Evidence for very strong coupling between charge movement and channel opening is seen in two channel types, with the probability of voltage-independent channel openings measured to be below 10(-9) in Shaker and below 4 x 10(-8) in Kv2.1.  相似文献   

11.
The S4 transmembrane domain in Shaker (Kv1) voltage-sensitive potassium channels has four basic residues (R1–R4) that are responsible for carrying the majority of gating charge. In Kv4 channels, however, R1 is replaced by a neutral valine at position 287. Among other differences, Kv4 channels display prominent closed state inactivation, a mechanism which is minimal in Shaker. To determine if the absence of R1 is responsible for important variation in gating characteristics between the two channel types, we introduced the V287R mutant into Kv4.3 and analyzed its effects on several voltage sensitive gating transitions. We found that the mutant increased the voltage sensitivity of steady-state activation and altered the kinetics of activation and deactivation processes. Although the kinetics of macroscopic inactivation were minimally affected, the characteristics of closed-state inactivation and recovery from open and closed inactivated states were significantly altered. The absence of R1 can only partially account for differences in the effective voltage sensitivity of gating between Shaker and Kv4.3. These results suggest that the S4 domain serves an important functional role in Kv4 channel activation and deactivation processes, and also those of closed-state inactivation and recovery.  相似文献   

12.
The stimulation of cell proliferation by insulin like growth factor IGF-1 has previously been shown to depend on activation of voltage gated K(+) channels. The signaling involved in activation of voltage gated K(+) channel Kv1.3 includes the phosphatidylinositol-3 (PI3) protein kinase, 3-phosphoinositide dependent protein kinase PDK1 and the serum and glucocorticoid inducible kinase SGK1. However, nothing is known about mechanisms mediating the stimulation of Kv1.3 by SGK1. Most recently, SGK1 has been shown to phosphorylate and thus inactivate the ubiquitin ligase Nedd4-2. The present study has been performed to explore whether the regulation of Kv1.3 involves Nedd4-2. To this end Kv1.3 has been expressed in Xenopus oocytes with or without coexpression of Nedd4-2 and/or constitutively active (S422D)SGK1. In oocytes expressing Kv1.3 but not in water injected oocytes, depolarization from a holding potential of -80 mV to +20 mV triggers rapidly inactivating currents typical for Kv1.3. Coexpression of Nedd4-2 decreases, coexpression of (S422D)SGK1 enhances the currents significantly. The effects of either Nedd4-2 or of SGK1 are abrogated by destruction of the respective catalytic subunits ((C938S)Nedd4-2 or (K127N)SGK1). Further experiments revealed that wild type SGK1 and SGK3 and to a lesser extent SGK2 are similarly effective in stimulating Kv1.3 in both, presence and absence of Nedd4-2. It is concluded that Kv1.3 is downregulated by Nedd4-2 and stimulates by SGK1, SGK2, and SGK3. The data thus disclose a novel mechanism of Kv1.3 channel regulation.  相似文献   

13.
KCNQ1 is a pore-forming K+ channel subunit critically important to cardiac repolarization at high heart rates. (2R)-N-[4-(4-methoxyphenyl)-2-thiazolyl]-1-[(4-methylphenyl)sulfonyl]-2 piperidinecarboxamide, or ML277, is an activator of this channel that rescues function of pathophysiologically important mutant channel complexes in human induced pluripotent stem cell–derived cardiomyocytes, and that therefore may have therapeutic potential. Here we extend our understanding of ML277 actions through cell-attached single-channel recordings of wild-type and mutant KCNQ1 channels with voltage sensor domains fixed in resting, intermediate, and activated states. ML277 has profound effects on KCNQ1 single-channel kinetics, eliminating the flickering nature of the openings, converting them to discrete opening bursts, and increasing their amplitudes approximately threefold. KCNQ1 single-channel behavior after ML277 treatment most resembles IO state-locked channels (E160R/R231E) rather than AO state channels (E160R/R237E), suggesting that at least during ML277 treatment, KCNQ1 does not frequently visit the AO state. Introduction of KCNE1 subunits reduces the effectiveness of ML277, but some enhancement of single-channel openings is still observed.  相似文献   

14.
The physiological properties of most ion channels are defined experimentally by functional expression of their pore-forming alpha subunits in Xenopus laevis oocytes. Here, we cloned a family of Xenopus KCNE genes that encode MinK-related peptide K(+) channel beta subunits (xMiRPs) and demonstrated their constitutive expression in oocytes. Electrophysiological analysis of xMiRP2 revealed that when overexpressed this gene modulates human cardiac K(+) channel alpha subunits HERG (human ether-a-go-go-related gene) and KCNQ1 by suppressing HERG currents and removing the voltage dependence of KCNQ1 activation. The ability of endogenous levels of xMiRP2 to contribute to the biophysical attributes of overexpressed mammalian K(+) channels in oocyte studies was assessed next. Injection of an xMiRP2 sequence-specific short interfering RNA (siRNA) oligo reduced endogenous xMiRP2 expression 5-fold, whereas a control siRNA oligo had no effect, indicating the effectiveness of the RNA interference technique in Xenopus oocytes. The functional effects of endogenous xMiRP2 silencing were tested using electrophysiological analysis of heterologously expressed HERG channels. The RNA interference-mediated reduction of endogenous xMiRP2 expression increased macroscopic HERG current as much as 10-fold depending on HERG cRNA concentration. The functional effects of human MiRP1 (hMiRP1)/HERG interaction were also affected by endogenous xMiRP2. At high HERG channel density, at which the effects of endogenous xMiRP2 are minimal, hMiRP1 reduced HERG current. At low HERG current density, hMiRP1 paradoxically up-regulated HERG current, a result consistent with hMiRP1 rescuing HERG from suppression by endogenous xMiRP2. Thus, endogenous Xenopus MiRP subunits contribute to the base-line properties of K(+) channels like HERG in oocyte expression studies, which could explain expression level- and expression system-dependent variation in K(+) channel function.  相似文献   

15.
Modulation of voltage-gated potassium (KV) channels by the KCNE family of single transmembrane proteins has physiological and pathophysiological importance. All five KCNE proteins (KCNE1–KCNE5) have been demonstrated to modulate heterologously expressed KCNQ1 (KV7.1) with diverse effects, making this channel a valuable experimental platform for elucidating structure–function relationships and mechanistic differences among members of this intriguing group of accessory subunits. Here, we specifically investigated the determinants of KCNQ1 inhibition by KCNE4, the least well-studied KCNE protein. In CHO-K1 cells, KCNQ1, but not KCNQ4, is strongly inhibited by coexpression with KCNE4. By studying KCNQ1-KCNQ4 chimeras, we identified two adjacent residues (K326 and T327) within the extracellular end of the KCNQ1 S6 segment that determine inhibition of KCNQ1 by KCNE4. This dipeptide motif is distinct from neighboring S6 sequences that enable modulation by KCNE1 and KCNE3. Conversely, S6 mutations (S338C and F340C) that alter KCNE1 and KCNE3 effects on KCNQ1 do not abrogate KCNE4 inhibition. Further, KCNQ1-KCNQ4 chimeras that exhibited resistance to the inhibitory effects of KCNE4 still interact biochemically with this protein, implying that accessory subunit binding alone is not sufficient for channel modulation. These observations indicate that the diverse functional effects observed for KCNE proteins depend, in part, on structures intrinsic to the pore-forming subunit, and that distinct S6 subdomains determine KCNQ1 responses to KCNE1, KCNE3, and KCNE4.  相似文献   

16.
The localization of ion channels to specific membrane microdomains can impact the functional properties of channels and their role in cellular physiology. We determined the membrane localization of human Kv11.1 (hERG1) alpha-subunit protein, which underlies the rapidly activating, delayed rectifier K(+) current (I(Kr)) in the heart. Immunocytochemistry and membrane fractionation using discontinuous sucrose density gradients of adult canine ventricular tissue showed that Kv11.1 channel protein localized to both the cell surface and T-tubular sarcolemma. Furthermore, density gradient membrane fractionation using detergent (Triton X-100) and non-detergent (OptiPrep) methods from canine ventricular myocytes or HEK293 cells demonstrated that Kv11.1 protein, along with MiRP1 and Kv7.1 (KCNQ1) proteins, localize in cholesterol and sphingolipid enriched membrane fractions. In HEK293 cells, Kv11.1 channels, but not long QT-associated mutant G601S-Kv11.1 channels, also localized to cholesterol and sphingolipid enriched membrane fractions. Depletion of membrane cholesterol from HEK293 cells expressing Kv11.1 channels using methyl-beta-cyclodextrin (MbetaCD) caused a positive shift of the voltage dependence of activation and an acceleration of deactivation kinetics of Kv11.1 current (I(Kv11.1)). Cholesterol loading of HEK293 cells reduced the steep voltage dependence of I(Kv11.1) activation and accelerated the inactivation kinetics of I(Kv11.1). Incubation of neonatal mouse myocytes in MbetaCD also accelerated the deactivation kinetics of I(Kr). We conclude that Kv11.1 protein localizes in cholesterol and sphingolipid enriched membranes and that membrane cholesterol can modulate I(Kv11.1) and I(Kr).  相似文献   

17.
We constructed chimeras between the rapidly activating Kv1.2 channel and the slowly activating Kv2.1 channel in order to study to what extent sequence differences within the S1–S4 region contribute to the difference in activation kinetics. The channels were expressed in Xenopus oocytes and the currents were measured with a two-microelectrode voltage-clamp technique. Substitution of the S1–S4 region of Kv2.1 subunits by the ones of Kv1.2 resulted in chimeric channels which activated more rapidly than Kv2.1. Furthermore, activation kinetics were nearly voltage-independent in contrast to the pronounced voltage-dependent activation kinetics of both parent channels. Systematic screening of the S1–S4 region by the replacement of smaller protein parts resolved that the main functional changes generated by the S1–S4 substitution were generated by the S2 and the S3 segment. However, the effects of these segments were different: The S3 substitution reduced the effective gating charge and accelerated both a voltage-dependent and a voltage-independent component of the activation time course. In contrast, the S2 substitution accelerated predominantly the voltage-dependent component of the activation time course thereby leaving the effective gating charge unchanged. It is concluded that the S2 and the S3 segment determine the activation kinetics in a specific manner. Received: 13 November 2000/Revised: 5 April 2001  相似文献   

18.
Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K(+) channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K(+) channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions.  相似文献   

19.
The molecular and biophysical mechanisms by which voltage-sensitive K+ (Kv)4 channels inactivate and recover from inactivation are presently unresolved. There is a general consensus, however, that Shaker-like N- and P/C-type mechanisms are likely not involved. Kv4 channels also display prominent inactivation from preactivated closed states [closed-state inactivation (CSI)], a process that appears to be absent in Shaker channels. As in Shaker channels, voltage sensitivity in Kv4 channels is thought to be conferred by positively charged residues localized to the fourth transmembrane segment (S4) of the voltage-sensing domain. To investigate the role of S4 positive charge in Kv4.3 gating transitions, we analyzed the effects of charge elimination at each positively charged arginine (R) residue by mutation to the uncharged residue alanine (A). We first demonstrated that R290A, R293A, R296A, and R302A mutants each alter basic activation characteristics consistent with positive charge removal. We then found strong evidence that recovery from inactivation is coupled to deactivation, showed that the precise location of the arginine residues within S4 plays an important role in the degree of development of CSI and recovery from CSI, and demonstrated that the development of CSI can be sequentially uncoupled from activation by R296A, specifically. Taken together, these results extend our current understanding of Kv4.3 gating transitions. voltage-sensitive potassium channel; Shaker; closed-state inactivation  相似文献   

20.
Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide–gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4–S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation appears fundamentally different for Elk and KCNQ channels, suggesting that, although both channel types can regulate action potential threshold in neurons, they are not functionally redundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号