首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress markers as well as high concentrations of copper are found in the vicinity of Abeta amyloid deposits in Alzheimer's disease. The neurotoxicity of Abeta in cell culture has been linked to H(2)O(2) generation by an unknown mechanism. We now report that Cu(II) markedly potentiates the neurotoxicity exhibited by Abeta in cell culture. The potentiation of toxicity is greatest for Abeta1-42 > Abeta1-40 > mouse/rat Abeta1-40, corresponding to their relative capacities to reduce Cu(II) to Cu(I), form H(2)O(2) in cell-free assays and to exhibit amyloid pathology. The copper complex of Abeta1-42 has a highly positive formal reduction potential ( approximately +500-550 mV versus Ag/AgCl) characteristic of strongly reducing cuproproteins. These findings suggest that certain redox active metal ions may be important in exacerbating and perhaps facilitating Abeta-mediated oxidative damage in Alzheimer's disease.  相似文献   

2.
Binding of Zn(II), Cu(II) and Fe(II) ions to A beta1-40, A beta1-42 and a single tryptophan mutant of Abeta 1-40 in solution at pH 7.4 was studied by fluorescent titration. Job plots and fitting of titration curves revealed formation of 1:1 and 1:2 peptide-metal complexes. For dimeric peptides A beta1-40 and A betaF4W the order of metal to peptide affinities is Fe < Cu > Zn, which is in agreement with the Irving-Williams series of complex stability. The affinity of A beta1-42 for Fe increases dramatically upon aggregation: K(D) changes from ca. 100 to ca. 0.2 microM.  相似文献   

3.
Aggregation of amyloid beta-peptide (Abeta), a key pathological event in Alzheimer's disease, has been shown in vitro to be profoundly promoted by Zn(II). This fact suggests that some factors in the normal brain protect Abeta from the Zn(II)-induced aggregation. We demonstrate for the first time that Cu(II) effectively inhibits the Abeta aggregation by competing with Zn(II) for histidine residues. The Raman spectrum of a metal-Abeta complex in the presence of both Zn(II) and Cu(II) shows that the cross-linking of Abeta through binding of Zn(II) to the N(tau) atom of histidine is prevented by chelation of Cu(II) by the N(pi) atom of histidine and nearby amide nitrogens. The inhibitory effect is strongest at a Cu/Abeta molar ratio of around 4. Above this ratio, Cu(II) itself promotes the Abeta aggregation by binding to the phenolate oxygen of Tyr10. These results emphasize the importance of regulation of Cu(II) levels to inhibit Abeta aggregation, and are consistent with an altered metal homeostasis in Alzheimer's disease.  相似文献   

4.
Cu and Zn have been shown to accumulate in the brains of Alzheimer's disease patients. We have previously reported that Cu(2+) and Zn(2+) bind amyloid beta (Abeta), explaining their enrichment in plaque pathology. Here we detail the stoichiometries and binding affinities of multiple cooperative Cu(2+)-binding sites on synthetic Abeta1-40 and Abeta1-42. We have developed a ligand displacement technique (competitive metal capture analysis) that uses metal-chelator complexes to evaluate metal ion binding to Abeta, a notoriously self-aggregating peptide. This analysis indicated that there is a very-high-affinity Cu(2+)-binding site on Abeta1-42 (log K(app) = 17.2) that mediates peptide precipitation and that the tendency of this peptide to self-aggregate in aqueous solutions is due to the presence of trace Cu(2+) contamination (customarily approximately 0.1 microM). In contrast, Abeta1-40 has much lower affinity for Cu(2+) at this site (estimated log K(app) = 10.3), explaining why this peptide is less self-aggregating. The greater Cu(2+)-binding affinity of Abeta1-42 compared with Abeta1-40 is associated with significantly diminished negative cooperativity. The role of trace metal contamination in inducing Abeta precipitation was confirmed by the demonstration that Abeta peptide (10 microM) remained soluble for 5 days only in the presence of high-affinity Cu(2+)-selective chelators.  相似文献   

5.
Although metal ions such as Cu(2+), Zn(2+), and Fe(3+) are implicated to play a key role in Alzheimer disease, their role is rather complex, and comprehensive understanding is not yet obtained. We show that Cu(2+) and Zn(2+) but not Fe(3+) renders the amyloid beta peptide, Abeta(1-40), nonfibrillogenic in nature. However, preformed fibrils of Abeta(1-40) were stable when treated with these metal ions. Consequently, fibril growth of Abeta(1-40) could be switched on/off by switching the molecule between its apo- and holo-forms. Clioquinol, a potential drug for Alzheimer disease, induced resumption of the Cu(2+)-suppressed but not the Zn(2+)-suppressed fibril growth of Abeta(1-40). The observed synergistic effect of clioquinol and Zn(2+) suggests that Zn(2+)-clioquinol complex effectively retards fibril growth. Thus, clioquinol has dual effects; although it disaggregates the metal ion-induced aggregates of Abeta(1-40) through metal chelation, it further retards the fibril growth along with Zn(2+). These results indicate the mechanism of metal ions in suppressing Abeta amyloid formation, as well as providing information toward the use of metal ion chelators, particularly clioquinol, as potential drugs for Alzheimer disease.  相似文献   

6.
Ha C  Ryu J  Park CB 《Biochemistry》2007,46(20):6118-6125
The abnormal deposition and aggregation of beta-amyloid (Abeta) on brain tissues are considered to be one of the characteristic neuropathological features of Alzheimer's disease (AD). Environmental conditions such as metal ions, pH, and cell membranes are associated with Abeta deposition and plaque formation. According to the amyloid cascade hypothesis of AD, the deposition of Abeta42 oligomers as diffuse plaques in vivo is an important earliest event, leading to the formation of fibrillar amyloid plaques by the further accumulation of soluble Abeta under certain environmental conditions. In order to characterize the effect of metal ions on amyloid deposition and plaque growth on a solid surface, we prepared a synthetic template by immobilizing Abeta oligomers onto a N-hydroxysuccinimide ester-activated solid surface. According to our study using ex situ atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), and thioflavin T (ThT) fluorescence spectroscopy, Cu2+ and Zn2+ ions accelerated both Abeta40 and Abeta42 deposition but resulted only in the formation of "amorphous" aggregates. In contrast, Fe3+ induced the deposition of "fibrillar" amyloid plaques at neutral pH. Under mildly acidic environments, the formation of fibrillar amyloid plaques was not induced by any metal ion tested in this work. Using secondary ion mass spectroscopy (SIMS) analysis, we found that binding Cu ions to Abeta deposits on a solid template occurred by the possible reduction of Cu ions during the interaction of Abeta with Cu2+. Our results may provide insights into the role of metal ions on the formation of fibrillar or amorphous amyloid plaques in AD.  相似文献   

7.
Amyloid plaques associated to Alzheimer's disease present a high content of zinc ions. We previously showed that the N-terminal region of the amyloid peptide Abeta constitutes an autonomous zinc-binding domain. This region encompasses the previously identified epitope Abeta(4-10) targeted by antibodies capable to reduce amyloid deposition, but the influence of Abeta/Zn binding on the epitope recognition remains unknown. We demonstrate here the effect of Zn2+ ions on the recognition of peptides sharing the sequence of the Abeta N-terminal domain, by two monoclonal antibodies recognizing the beta-amyloid(4-10) epitope. The presence of Zn2+, but not of other cations, increased the recognition of the (1-16) peptide, while it was without effect on the recognition of the (1-10) peptide. These findings show a zinc-induced conformational change of the (1-16)-N-terminal region of AP3, which results in a better accessibility of the Abeta(4-10) epitope to the anti-Abeta antibodies, and suggest a role of zinc in epitope-based vaccination approaches.  相似文献   

8.
Ryu J  Girigoswami K  Ha C  Ku SH  Park CB 《Biochemistry》2008,47(19):5328-5335
Recently discovered evidences suggest that precipitation of Alzheimer's beta-amyloid (Abeta) peptide and the toxicity in Alzheimer's disease (AD) are caused by abnormal interactions with neocortical metal ions, especially Zn2+, Cu2+, and Fe3+. While many studies had focused on the role of a "single" metal ion and its interaction with Abeta peptides, such studies involving "multiple" metal ions have hardly been explored. Here, to explore the nature of codeposition of different metals, two or more metal ions along with Abeta were incubated over a solid template prepared by immobilizing Abeta42 oligomers. The influence of Zn2+,Cu2+, and Fe3+ on Abeta aggregation was investigated by two approaches: co-incubation and sequential addition. Our results using ex situ AFM, ThT-induced fluorescence, and FTIR spectroscopy indicated that the co-incubation of Cu2+, Zn2+, and Fe3+ significantly altered the morphology of aggregates. A concentration dependence study with mixed metal ions suggested that Zn2+ was required at much lower concentrations than Cu2+ to yield nonfibrillar amorphous Abeta deposits. In addition, sequential addition of Zn2+ or Cu2+ on fibrillar aggregates formed by Fe3+ demonstrated that Zn2+ and Cu2+ could possibly change the conformation of the aggregates induced by Fe3+. Our findings elucidate the coexistence of multiple metal ions through their interactions with Abeta peptides or its aggregates.  相似文献   

9.
The Amyloid beta peptide (Abeta) of Alzheimer's diseases (AD) is closely linked to the progressive cognitive decline associated with the disease. Cu2+ ions can induce the de novo aggregation of the Abeta peptide into non-amyloidogenic aggregates and the production of a toxic species. The mechanism by which Cu2+ mediates the change from amyloid material toward Cu2+ induced aggregates is poorly defined. Here we demonstrate that the aggregation state of Abeta1-42 at neutral pH is governed by the Cu2+:peptide molar ratio. By probing amyloid content and total aggregation, we observed a distinct Cu2+ switching effect centered at equimolar Cu2+:peptide ratios. At sub-equimolar Cu2+:peptide molar ratios, Abeta1-42 forms thioflavin-T reactive amyloid; conversely, at supra-equimolar Cu2+:peptide molar ratios, Abeta1-42 forms both small spherical oligomers approximately 10-20 nm in size and large amorphous aggregates. We demonstrate that these insoluble aggregates form spontaneously via a soluble species without the presence of an observable lag phase. In seeding experiments, the Cu2+ induced aggregates were unable to influence fibril formation or convert into fibrillar material. Aged Cu2+ induced aggregates are toxic when compared to Abeta1-42 aged in the absence of Cu2+. Importantly, the formation of dityrosine crosslinked Abeta, by the oxidative modification of the peptide, only occurs at equimolar molar ratios and above. The formation of dityrosine adducts occurs following the initiation of aggregation and hence does not drive the formation of the Cu2+ induced aggregates. These results define the role Cu2+ plays in modulating the aggregation state and toxicity of Abeta1-42.  相似文献   

10.
Yu H  Ren J  Qu X 《Biophysical journal》2007,92(1):185-191
The major protein component of the amyloid deposition in Alzheimer's disease is a 39-43 residue peptide, amyloid beta (Abeta). Abeta is toxic to neurons, although the mechanism of neurodegeneration is uncertain. Evidence exists for non-B DNA conformation in the hippocampus of Alzheimer's disease brains, and Abeta was reportedly able to transform DNA conformation in vitro. In this study, we found that DNA conformation was altered in the presence of Abeta, and Abeta induced DNA condensation in a time-dependent manner. Furthermore, Abeta sheets, serving as condensation nuclei, were crucial for DNA condensation, and Cu(2+) and Zn(2+) ions inhibited Abeta sheet-induced DNA condensation. Our results suggest DNA condensation as a mechanism of Abeta toxicity.  相似文献   

11.
Beta-amyloid peptide (Abeta), which is cleaved from the larger trans-membrane amyloid precursor protein, is found deposited in the brain of patients suffering from Alzheimer's disease and is linked with neurotoxicity. We report the results of studies of Abeta1-42 and the effect of metal ions (Cu2+ and Zn2+) on model membranes using 31P and 2H solid-state NMR, fluorescence and Langmuir Blodgett monolayer methods. Both the peptide and metal ions interact with the phospholipid headgroups and the effects on the lipid bilayer and the peptide structure were different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induced formation of smaller vesicles but when Abeta1-42 was associated with the bilayer membrane copper did not have this effect. Circular dichroism spectroscopy indicated that Abeta1-42 adopted more beta-sheet structure when incorporated in a lipid bilayer in comparison to the associated peptide, which was largely unstructured. Incorporated peptides appear to disrupt the membrane more severely than associated peptides, which may have implications for the role of Abeta in disease states.  相似文献   

12.
Amyloid beta peptide (Abeta) is the major constituent of extracellular plaques and perivascular amyloid deposits, the pathognomonic neuropathological lesions of Alzheimer's disease. Cu(2+) and Zn(2+) bind Abeta, inducing aggregation and giving rise to reactive oxygen species. These reactions may play a deleterious role in the disease state, because high concentrations of iron, copper, and zinc have been located in amyloid in diseased brains. Here we show that coordination of metal ions to Abeta is the same in both aqueous solution and lipid environments, with His(6), His(13), and His(14) all involved. At Cu(2+)/peptide molar ratios >0.3, Abeta coordinated a second Cu(2+) atom in a highly cooperative manner. This effect was abolished if the histidine residues were methylated at N(epsilon)2, indicating the presence of bridging histidine residues, as found in the active site of superoxide dismutase. Addition of Cu(2+) or Zn(2+) to Abeta in a negatively charged lipid environment caused a conformational change from beta-sheet to alpha-helix, accompanied by peptide oligomerization and membrane penetration. These results suggest that metal binding to Abeta generated an allosterically ordered membrane-penetrating oligomer linked by superoxide dismutase-like bridging histidine residues.  相似文献   

13.
S T Liu  G Howlett  C J Barrow 《Biochemistry》1999,38(29):9373-9378
Metal ions such as Zn(2+) and Cu(2+) have been implicated in both the aggregation and neurotoxicity of the beta-amyloid (Abeta) peptide that is present in the brains of Alzheimer's sufferers. Zinc ions in particular have been shown to induce rapid aggregation of Abeta. Rat Abeta binds zinc ions much less avidly than human Abeta, and rats do not form cerebral Abeta amyloid. Rat Abeta differs from human Abeta by the substitution of Gly for Arg, Phe for Tyr, and Arg for His at positions 5, 10, and 13, respectively. Through the use of synthetic peptides corresponding to the first 28 residues of human Abeta, rat Abeta, and single-residue variations, we use circular dichroism spectroscopy, sedimentation assays, and immobilized metal ion affinity chromatography to show that the substitution of Arg for His-13 is responsible for the different Zn(2+)-induced aggregation behavior of rat and human Abeta. The coordination of Zn(2+) to histidine-13 is critical to the zinc ion induced aggregation of Abeta.  相似文献   

14.
Zn(II) and Cu(II) precipitate Abeta in vitro into insoluble aggregates that are dissolved by metal chelators. We now report evidence that these biometals also mediate the deposition of Abeta amyloid in Alzheimer's disease, since the solubilization of Abeta from post-mortem brain tissue was significantly increased by the presence of chelators, EGTA, N,N,N',N'-tetrakis(2-pyridyl-methyl) ethylene diamine, and bathocuproine. Efficient extraction of Abeta also required Mg(II) and Ca(II). The chelators were more effective in extracting Abeta from Alzheimer's disease brain tissue than age-matched controls, suggesting that metal ions differentiate the chemical architecture of amyloid in Alzheimer's disease. Agents that specifically chelate copper and zinc ions but preserve Mg(II) and Ca(II) may be of therapeutic value in Alzheimer's disease.  相似文献   

15.
Lim KH  Kim YK  Chang YT 《Biochemistry》2007,46(47):13523-13532
Transition-metal ions (Cu2+ and Zn2+) play critical roles in the Abeta plaque formation. However, precise roles of the metal ions in the Abeta amyloidogenesis have been controversial. In this study, the molecular mechanism of the metal-induced Abeta oligomerization was investigated with extensive metal ion titration NMR experiments. Upon additions of the metal ions, the N-terminal region (1-16) of the Abeta (1-40) peptide was selectively perturbed. In particular, polar residues 4-8 and 13-15 were more strongly affected by the metal ions, suggesting that those regions may be the major binding sites of the metal ions. The NMR signal changes of the N-terminal region were dependent on the peptide concentrations (higher peptide concentrations resulted in stronger signal changes), suggesting that the metal ions facilitate the intermolecular contact between the Abeta peptides. The Abeta (1-40) peptides (>30 microM) were eventually oligomerized even at low temperature (3 degrees C), where the Abeta peptides are stable as monomeric forms without the metal ions. The real-time oligomerization process was monitored by 1H/15N HSQC NMR experiments, which provided the first residue-specific structural transition information. Hydrophobic residues 12-21 initially underwent conformational changes due to the intermolecular interactions. After the initial structural rearrangements, the C-terminal residues (32-40) readjusted their conformations presumably for effective oligomerization. Similar structural changes of the metal-free Abeta (1-40) peptides were also observed in the presence of the preformed oligomers, suggesting that the conformational transitions may be the general molecular mechanism of the Abeta (1-40) amyloidogenesis.  相似文献   

16.
Abeta binds Zn(2+), Cu(2+), and Fe(3+) in vitro, and these metals are markedly elevated in the neocortex and especially enriched in amyloid plaque deposits of individuals with Alzheimer's disease (AD). Zn(2+) precipitates Abeta in vitro, and Cu(2+) interaction with Abeta promotes its neurotoxicity, correlating with metal reduction and the cell-free generation of H(2)O(2) (Abeta1-42 > Abeta1-40 > ratAbeta1-40). Because Zn(2+) is redox-inert, we studied the possibility that it may play an inhibitory role in H(2)O(2)-mediated Abeta toxicity. In competition to the cytotoxic potentiation caused by coincubation with Cu(2+), Zn(2+) rescued primary cortical and human embryonic kidney 293 cells that were exposed to Abeta1-42, correlating with the effect of Zn(2+) in suppressing Cu(2+)-dependent H(2)O(2) formation from Abeta1-42. Since plaques contain exceptionally high concentrations of Zn(2+), we examined the relationship between oxidation (8-OH guanosine) levels in AD-affected tissue and histological amyloid burden and found a significant negative correlation. These data suggest a protective role for Zn(2+) in AD, where plaques form as the result of a more robust Zn(2+) antioxidant response to the underlying oxidative attack.  相似文献   

17.
Elevated levels of zinc2+ and copper2+ are found chelated to the amyloid-beta-peptide (Abeta) in isolated senile plaque cores of Alzheimer's disease (AD) patients. However, the precise residues involved in Zn2+ ligation are yet to be established. We have used 1H NMR and CD to probe the binding of Zn2+ to Abeta(1-28). Zinc binding to Abeta causes a number of 1H NMR resonances to exhibit intermediate exchange broadening upon Zn2+ addition, signals in slow and fast exchange are also observed. In addition, there is a general loss of signal for all resonances with Zn2+ addition, suggestive of the formation of high molecular weight polymeric species. Perturbations in specific 1H NMR resonances between residues 6 and 14, and analysis of various Abeta analogues in which each of the three His residues have been replaced by alanine, indicates that His6, His13 and His14 residues are implicated in Zn-Abeta binding. Complementary studies with Cd2+ ions cause perturbations to 1H NMR spectra that are strikingly similar to that observed for Zn2+. Binding monitored at Val12 indicates a 1:1 stoichiometry with Abeta for both Zn2+ and Cd2+ ions. Circular Dichroism (CD) studies in the far-UV indicate quite minimal ordering of the main-chain with Zn2+ or Cd2+ addition. Changes in the far-UV are quite different from that obtained with Cu2+ additions indicating that Zn2+ coordination is distinct from that of Cu2+ ions. Taken together, these observations seem to suggest that Zn2+ coordination is dominated by inter-molecular coordination and the formation of polymeric species.  相似文献   

18.
Alzheimer's disease (AD) is characterized by the misfolding and plaque-like accumulation of a naturally occurring peptide in the brain called amyloid beta (Abeta). Recently, this process has been associated with the binding of metal ions such as iron (Fe), copper (Cu), and zinc (Zn). It is thought that metal dyshomeostasis is involved in protein misfolding and may lead to oxidative stress and neuronal damage. However, the exact role of the misfolded proteins and metal ions in the degenerative process of AD is not yet clear. In this study, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to image the in situ secondary structure of the amyloid plaques in brain tissue of AD patients. These results were spatially correlated with metal ion accumulation in the same tissue sample using synchrotron X-ray fluorescence (SXRF) microprobe. For both techniques, a spatial resolution of 5-10 microm was achieved. FTIRM results showed that the amyloid plaques have elevated beta-sheet content, as demonstrated by a strong amide I absorbance at 1625cm(-1). Using SXRF microprobe, we find that AD tissue also contains "hot spots" of accumulated metal ions, specifically Cu and Zn, with a strong spatial correlation between these two ions. The "hot spots" of accumulated Zn and Cu were co-localized with beta-amyloid plaques. Thus for the first time, a strong spatial correlation has been observed between elevated beta-sheet content in Abeta plaques and accumulated Cu and Zn ions, emphasizing an association of metal ions with amyloid formation in AD.  相似文献   

19.
Zinc may play an important role in the pathogenesis of Alzheimer's disease (AD) through influencing the conformation and neurotoxicity of amyloid beta-proteins (Abeta). Zn(2+) induces rapid aggregation of synthetic or endogenous Abeta in a pH-dependent fashion. Here we show for the first time that Zn(2+)-induced aggregation of Abeta (10-21) potentiates its action on outward potassium currents in hippocampal CA1 pyramidal neurons. Using the whole-cell voltage-clamp technique, we showed that Abeta (10-21) blocked the fast-inactivating outward potassium current (I(A)) in a concentration- and aggregation-dependent manner, but with no effect on the delayed rectifier potassium current (I(K)). Both the unaggregated and aggregated forms of Abeta (10-21) significantly shifted the activation curve and the inactivation curve of I(A) to more negative potentials. But the aggregated form has more effects than the unaggregated form. These data indicated that aggregation of amyloid fragments by zinc ions is required in order to obtain full modulatory effects on potassium channel currents.  相似文献   

20.
Mounting evidence has shown that dyshomeostasis of the redox-active biometals such as Cuand Fe can lead to oxidative stress,which plays a key role in the neuropathology of Alzheimer's disease(AD).Here we demonstrate that with the formation of Cu(Ⅱ)·Aβ1-40 complexes,copper markedly potentiatesthe neurotoxicity exhibited by β-amyloid peptide (Aβ).A greater amount of hydrogen peroxide was releasedwhen Cu(Ⅱ)·Aβ1-40 complexes was added to the xanthine oxidase/xanthine system detected by potassiumiodide spectrophotometry.Copper bound to Aβ1-40 was observed by electron paramagnetic resonance(EPR) spectroscopy.Circular dichroism (CD) studies indicated that copper chelation could cause a structuraltransition of Aβ.The addition of copper to Aβ introduced an increase on β-sheet as well as α-helix,whichmay be responsible for the aggregation of Aβ.We hypothesized that Aβ aggregation induced by copper maybe responsible for local injury in AD.The interaction between Cu~(2 ) and Aβ also provides a possible mechanismfor the enrichment of metal ions in amyloid plaques in the AD brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号