首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Urease is an essential virulence factor and colonization factor for Helicobacter pylori, of which the urease B subunit (UreB) is considered as an excellent vaccine candidate antigen. In previous study, an epitope vaccine with cholera toxin B subunit (CTB) and an epitope (UreB321–339) named CtUBE was constructed and the mice were protected significantly after intragastric vaccination with the CtUBE liposome vaccine. However, the fusion protein CtUBE was expressed as inclusion bodies and was difficultly purified. Besides, the immunogenicity and specificity of the CtUBE vaccine was not investigated in a fairly wide and detailed way. In this study, the fusion peptide CtUBE was reconstructed and expressed as a soluble protein with pectinase signal peptide at the N terminus and the 6-his tag at its C-terminal, and then the immunogenicity, specificity, prophylactic, and therapeutic efficacy of the reconstructed CtUBE (rCtUBE) vaccine were evaluated in BALB/c mice model after purification. The experimental results indicated that mice immunized with rCtUBE could produce comparatively high level of specific antibodies which could respond to natural H. pylori urease, UreB, or the minimal epitope UreB327–334 involved with the active site of urease, and showed effectively inhibitory effect on the enzymatic activity of urease. Besides, oral prophylactic or therapeutic immunization with rCtUBE significantly decreased H. pylori colonization compared with oral immunization with rCTB or PBS, and the protection was correlated with antigen-specific IgG, IgA, and mucosal sIgA antibody responses, and a Th2 cells response. This rCtUBE vaccine may be a promising vaccine candidate for the control of H. pylori infection.  相似文献   

2.
Epitope vaccine based on urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In this study, we constructed an epitope vaccine with mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA183-203) of H. pylori urease A subunit named CTB-UA. The CTB-UA fusion protein was expressed in Escherichia coli, and the purified protein was used for intraperitoneal immunization experiments in BALB/c mice. The experimental results indicated that anti-CTB-UA antibody could recognize both H. pylori urease A subunit (UreA) and urease B subunit (UreB). Besides, the CTB-UA epitope vaccine had good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies which showed effectively inhibitory effect on the enzymatic activity of H. pylori urease. CTB-UA is a promising molecule to be investigated as H. pylori vaccine antigen candidate.  相似文献   

3.
Epitope vaccine based on the enzyme urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In our previous study, the epitope vaccine CTB-UA, which was composed of the mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA(183-203)) from the H. pylori urease A subunit (UreA) was constructed. This particular vaccine was shown to have good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies, which exhibited effectively inhibitory effects on the enzymatic activity of H. pylori urease. In this study, the prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA was evaluated in a BALB/c mice model. The experimental results indicated that oral prophylactic or therapeutic immunization with CTB-UA significantly decreased H. pylori colonization compared with oral immunization with PBS. The results also revealed that the protection was correlated with antigen-specific IgG, IgA, and mucosal secretory IgA antibody responses. CTB-UA may be a promising vaccine candidate for the control of H. pylori infection.  相似文献   

4.
A multivalent fusion vaccine is a promising option for protection against Helicobacter pylori infection. In this study, UreB414 was identified as an antigenic fragment of urease B subunit (UreB) and it induced an antibody inhibiting urease activity. Immunization with UreB414 partially protected mice from H. pylori infection. Furthermore, a trivalent fusion vaccine was constructed by genetically linking heat shock protein A (HspA), H. pylori adhesin A (HpaA), and UreB414, resulting in recombinant HspA-HpaA-UreB414 (rHHU). Its protective effect against H. pylori infection was tested in BALB/c mice. Oral administration of rHHU significantly protected mice from H. pylori infection, which was associated with H. pylori-specific antibody production and Th1/Th2-type immune responses. The results show that a trivalent fusion vaccine efficiently combats H. pylori infection, and that an antigenic fragment of the protein can be used instead of the whole protein to construct a multivalent vaccine.  相似文献   

5.

Background

Helicobacter pylori infection remains a major public health threat leading to gastrointestinal illness and increased risk of gastric cancer. Mostly affecting populations in developing countries no vaccines are yet available and the disease is controlled by antimicrobials which, in turn, are driving the emergence of AMR.

Materials and Methods

We have engineered spores of Bacillus subtilis to display putative H. pylori protective antigens, urease subunit A (UreA) and subunit B (UreB) on the spore surface. Following oral dosing of mice with these spores, we evaluated immunity and colonization in animals challenged with H. pylori.

Results

Oral immunization with spores expressing either UreA or UreB showed antigen-specific mucosal responses (fecal sIgA) including seroconversion and hyperimmunity. Following challenge, colonization by H. pylori was significantly reduced by up to 1-log.

Conclusions

This study demonstrates the utility of bacterial spores for mucosal vaccination to H. pylori infection. The heat stability and robustness of Bacillus spores coupled with their existing use as probiotics make them an attractive solution for either protection against H. pylori infection or potentially for therapy and control of active infection.  相似文献   

6.
A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform.  相似文献   

7.
The human gastric pathogen Helicobacter pylori (H. pylori) is a successful colonizer of the stomach. H. pylori infection strongly correlates with the development and progression of chronic gastritis, peptic ulcer disease, and gastric malignances. Vaccination is a promising strategy for preventing H. pylori infection. In this study, we evaluated the candidate antigens heat shock protein A (HspA) and H. pylori γ-glutamyl transpeptidase (GGT) for their effectiveness in development of subunit vaccines against H. pylori infection. rHspA, rGGT, and rHspA-GGT, a fusion protein based on HspA and GGT, were constructed and separately expressed in Escherichia coli and purified. Mice were then immunized intranasally with these proteins, with or without adjuvant. Immunized mice exhibited reduced bacterial colonization in stomach. The highest reduction in bacterial colonization was seen in mice immunized with the fusion protein rHspA-GGT when paired with the mucosal adjuvant LTB. Protection against H. pylori colonization was mediated by a strong systemic and localized humoral immune response, as well as a balanced Th1/Th2 cytokine response. In addition, immunofluorescence microscopy confirmed that rHspA-GGT specific rabbit antibodies were able to directly bind H. pylori in vitro. These results suggest antibodies are essential to the protective immunity associated with rHspA-GGT immunization. In summary, our results suggest HspA and GGT are promising vaccine candidates for protection against H. pylori infection.  相似文献   

8.
Helicobacter pylori (H. pylori) is established as the etiologic agent of chronic active gastritis, peptic ulcer, gastric cancer and mucosa-associated lymphoid tissue lymphoma. The development of a vaccine against H. pylori has become a priority to prevent and cure H. pylori infection. The UreB (urease B) subunit is the most effective and common immunogen of all strains of H. pylori and may stimulate the immunoresponse protecting the human body against the challenge of H. pylori. To date no report has documented an edible carrot vaccine against H. pylori. We transformed the gene of UreB into carrot by Agrobacterium-mediated transformation and the regenerated carrot plants demonstrated that the expressed UreB protein accounted for 25 μg/g roots and was effective to induce immune response in mice. These results suggest that the UreB transgenic carrot can be potentially used as an edible vaccine for controlling H. pylori.  相似文献   

9.
The development of vaccine approaches that induce mucosal and systemic immune responses is critical for the effective prevention of several infections. Here, we report on the use of the abundant human oral commensal bacterium Streptococcus mitis as a delivery vehicle for mucosal immunization. Using homologous recombination we generated a stable rS. mitis expressing a Mycobacterium tuberculosis protein (Ag85b). Oral administration of rS. mitis in gnotobiotic piglets resulted in efficient oral colonization and production of oral and systemic anti-Ag85b specific IgA and IgG antibodies. These results support that the commensal S. mitis is potentially a useful vector for mucosal vaccination.  相似文献   

10.
The aim of this study was to investigate the capacity of oral and parenteral therapeutic immunization to reduce the bacterial colonization in the stomach after experimental Helicobacter pylori infection, and to evaluate whether any specific immune responses are related to such reduction. C57BL/6 mice were infected with H. pylori and thereafter immunized with H. pylori lysate either orally together with cholera toxin or intraperitoneally (i.p.) together with alum using immunization protocols that previously have provided prophylactic protection. The effect of the immunizations on H. pylori infection was determined by quantitative culture of H. pylori from the mouse stomach. Mucosal and systemic antibody responses were analyzed by ELISA in saponin extracted gastric tissue and serum, respectively, and mucosal CD4+ T cell responses by an antigen specific proliferation assay. Supernatants from the proliferating CD4+ T cells were analyzed for Th1 and Th2 cytokines. The oral, but not the parenteral therapeutic immunization induced significant decrease in H. pylori colonization compared to control infected mice. The oral immunization resulted in markedly elevated levels of serum IgG+M as well as gastric IgA antibodies against H. pylori antigen and also increased H. pylori specific mucosal CD4+ T cell proliferation with a Th1 cytokine profile. Although the parenteral immunization induced dramatic increases in H. pylori specific serum antibody titers, no increases in mucosal antibody or cellular immune responses were observed after the i.p. immunization compared to control infected mice. These findings suggest that H. pylori specific mucosal immune responses with a Th1 profile may provide therapeutic protection against H. pylori.  相似文献   

11.
《Genomics》2020,112(5):3473-3483
Helicobacter pylori is a Gram-negative spiral-shaped bacterium that infects half of the human population worldwide and causes chronic inflammation. In the present study, we used the art of computational biology for therapeutic drug targets identification and a multi-epitope vaccine against multi-strains of H. pylori. For drug target identification, we used different tools and softwares to identify human non-homologous but pathogen essential proteins, with virulent properties and involved in unique metabolic pathways of H. pylori. For this purpose, the core proteome of 84 strains of H. pylori was retrieved from EDGAR 2.3 database. There were 59,808 proteins sequences in these strains. Duplicates and paralogous protein sequence removal was followed by human non-homologous protein miningPathogen essential and virulent proteins were subjected to pathway analysis Subcellular localization of the virulent proteins was predicted and druggability was also checked, leading to 30 druggable targets based on their similarity with the approved drug targets in Drugbank. For immunoinformatics analysis, we selected two outer membrane proteins (HPAKL86_RS06305 and HPSNT_RS00950) and subjected to determined immunogenic B and T-Cell epitopes. The B and T-Cell overlapped epitopes were selected to design 9 different vaccine constructs by using linkers and adjuvants. Least allergenic and most antigenic construct (C-8) was selected as a promiscuous vaccine to elicit host immune response. Cloning and in silico expression of the constructed vaccine (C-8) was done to produce a clone having the desired (gene) vaccine construct. In conclusion, the prioritized therapeutic targets for 84 strains of H.pylori will be useful for future therapy design. Vaccine design may also prove useful in the quest for targeting multi-strains of H. pylori in patients.  相似文献   

12.

Background  

Urease B is an important virulence factor that is required for Helicobacter pylori to colonise the gastric mucosa. Mouse monoclonal antibodies (mAbs) that inhibit urease B enzymatic activity will be useful as vaccines for the prevention and treatment of H. pylori infection. Here, we produced murine mAbs against urease B that neutralize the enzyme's activity. We mapped their epitopes by phage display libraries and investigated the immunogenicity of the selected mimotopes in vivo.  相似文献   

13.
The purpose of the present study was to examine the activity of the human Lactobacillus acidophilus strain LB, which secretes an antibacterial substance(s) against Helicobacter pylori in vitro and in vivo. The spent culture supernatant (SCS) of the strain LB (LB-SCS) dramatically decreased the viability of H. pylori in vitro independent of pH and lactic acid levels. Adhesion of H. pylori to the cultured human mucosecreting HT29-MTX cells decreased in parallel with the viability of H. pylori. In conventional mice, oral treatment with the LB-SCS protected against infection with Helicobacter felis. Indeed, at both 8 and 49 days post-LB-SCS treatment (29 and 70 days postinfection), inhibition of stomach colonization by H. felis was observed, and no evidence of gastric histopathological lesions was found. LB-SCS treatment inhibits the H. pylori urease activity in vitro and in H. pylori that remained associated with the cultured human mucosecreting HT29-MTX cells. Moreover, a decrease in urease activity was detected in the stomach of the mice infected with H. felis and treated with LB-SCS.  相似文献   

14.
Helicobacter pylori (H. pylori) plays an essential role in the development of various gastroduodenal diseases; however, no vaccines preventing H. pylori infection have been available now. This study was to evaluate the protective effect of rOmp22–HpaA fusion protein against H. pylori infection in mouse model and to screen the candidate to be used in the development of an oral vaccine against H. pylori. rOmp22, rHpaA, rOmp22+rHpaA, and rOmp22–HpaA groups were used to immunize mice with mLT63 as adjuvant by intragastric route, respectively, four times at 1-week intervals. Two weeks after last immunization, all of the animals were orally challenged with H. pylori NCTC11637 and then were killed after another 2 weeks. The mice gastric tissue of all groups was separated to detect the presence of infection by urease tests, to culture H. pylori, and to observe the histological characteristics. The protective effect against H. pylori challenge in mice immunized with rOmp22–HpaA fusion protein and mLT63 adjuvant was significantly higher than PBS and mLT63 control groups (P < 0.05), but no significant difference was detected among rOmp22, rHpaA, rOmp22+rHpaA, and rOmp22–HpaA groups (P > 0.05). rOmp22–HpaA fusion protein retained immunogenicity and could be used as an antigen candidate in the development of an oral vaccine against H. pylori infection.  相似文献   

15.
Dental caries remains one of the most common global chronic diseases caused by Streptococcus mutans,which is prevalent all over the world.The caries prevalence of children aged between 5-6 years old in China is still in very high rate.A potent and effective anti-caries vaccine has long been expected for caries prevention but no vaccines have been brought to market till now mainly due to the low ability to induce and maintain protective antibody in oral fluids.This review will give a brief historical retrospect on study of dental caries and pathogenesis,effective targets for anti-caries vaccines,oral immune system and immunization against dental caries.Then,salivary IgA antibodies and the protective responses are discussed in the context of the ontogeny of mucosal immunity to indigenous oral streptococcal.The methods and advancement for induction of specific anticaries salivary sIgA antibodies and enhancement of specific anti-caries salivary sIgA antibodies by intranasal immunization with a safe effective mucosal adjuvant are described.The progress in the enhancement of salivary sIgA antibodies and anticaries protection by intranasal immunization with flagellin-PAc fusion protein will be highlighted.Finally,some of the main strategies that have been used for successful mucosal vaccination of caries vaccine are reviewed,followed by discussion of the mucosal adjuvant choice for achieving protective immunity at oral mucosal membranes for development of a nasal-spray or nasal-drop anti-caries vaccine for human.  相似文献   

16.

Background

Through its effects on gastric secretion, we hypothesized that Helicobacter pylori infection may influence oral immunization. Accordingly, we examined the association between H. pylori infection, serum pepsinogen (PG) (measures for H. pylori gastritis) and vibriocidal antibody (a correlate of protection) seroconversion following oral immunization with CVD 103-HgR live cholera vaccine among children of different ages.

Methods

Sera from 422 Chilean children who were vaccinated with a single dose of CVD 103-HgR were tested by ELISA for serum IgG antibodies to H. pylori, PG I and PG II levels and antibodies to Shigella flexneri 2a lipopolysaccharide and hepatitis A virus (as markers of low socioeconomic status and exposure to enteric pathogens).

Results

The likelihood of vibriocidal antibody seroconversion following vaccination with CVD 103-HgR was significantly decreased in H. pylori-seropositive children age 6 months to 4 years with PG II>8 µg/L (adjusted OR 0.14 (95% CI 0.03–0.61; P = 0.009), and also in H. pylori seropositives with lower PG II level (adjusted OR 0.34, 95% CI 0.14–0.83; P = 0.017), compared to H. pylori-seronegatives. H. pylori-seropositive children aged 5–9 years with serum PG I>30 µg/L (indicating more severe gastritis) had higher odds of vibriocidal seroconversion than those with lower PG I levels (adjusted OR 4.41, 95%CI 1.26–15.38; P = 0.02). There was no significant association between exposures to S. flexneri 2a or hepatitis A virus and vibriocidal seroconversion.

Conclusions

As H. pylori gastritis progresses with increasing pediatric age in developing country venues, changes in gastric secretion ensue that we believe explain the observed differences in age-related immune responses to immunization with live oral cholera vaccine. The effect of H. pylori and changes of gastric acid secretion on the immunogenicity of various oral vaccines should be studied in different developing, transitional and industrialized country settings.  相似文献   

17.
We studied the potential inhibitory effect of Lactobacillus casei strain Shirota (from the fermented milk product Yakult [Yakult Ltd., Tokyo, Japan]) on Helicobacter pylori by using (i) in vitro inhibition assays with H. pylori SS1 (Sydney strain 1) and nine H. pylori clinical isolates and (ii) the in vivo H. pylori SS1 mouse model of infection over a period of 9 months. In vitro activity against H. pylori SS1 and all of the clinical isolates was observed in the presence of viable L. casei strain Shirota cells but not in the cell-free culture supernatant, although there was profound inhibition of urease activity. In vivo experiments were performed by oral administration of L. casei strain Shirota in the water supply over a period of 9 months to 6-week-old C57BL/6 mice previously infected with H. pylori SS1 (study group; n = 25). Appropriate control groups of H. pylori-infected but untreated animals (n = 25) and uninfected animals given L. casei strain Shirota (n = 25) also were included in the study. H. pylori colonization and development of gastritis were assessed at 1, 2, 3, 6, and 9 months postinfection. A significant reduction in the levels of H. pylori colonization was observed in the antrum and body mucosa in vivo in the lactobacillus-treated study group, as assessed by viable cultures, compared to the levels in the H. pylori-infected control group. This reduction was accompanied by a significant decline in the associated chronic and active gastric mucosal inflammation observed at each time point throughout the observation period. A trend toward a decrease in the anti-H. pylori immunoglobulin G response was measured in the serum of the animals treated with lactobacillus, although this decrease was not significant.  相似文献   

18.
19.
Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4+ and CD8+ T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 109, 1010 and 1011 CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 1011 CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.  相似文献   

20.
Overlapping decapeptide fragments of H. pylori urease subunit A (UreA) were synthesized and tested with polyclonal antibodies against Canavalia ensiformis (Jack bean) urease. The linear epitopes of UreA identified using the dot blot method were then examined using epitope mapping. For this purpose, series of overlapping fragments of UreA, frameshifted ± four amino acid residues were synthesized. Most of the UreA epitopes which reacted with the Jack bean urease polyclonal antibodies had been recognized in previous studies by monoclonal antibodies against H. pylori urease. Fragments 11 – 24, 21 – 33, and 31 – 42 were able to interact with the Jack bean urease antibodies, giving stable immunological complexes. However, the lack of recognition by these antibodies of all the components in the peptide map strongly suggests that a non‐continuous (nonlinear) epitope is located on the N‐terminal domain of UreA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号