首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering approach involving single amino acid substitution. Nine individual amino acids were selected as targets for site-saturated mutagenesis by the use of a predictive consensus approach in combination with prediction of protein mutant stability changes and B-factor iteration testing. After extensive experimental verification of the thermal stability of the designed mutants versus the original wild-type RGI lyase, several promising single point mutations were obtained, particularly in position Glu434 on the surface of the enzyme protein. The best mutant, Glu434Leu, produced a half-life of 31 min at 60 °C, corresponding to a 1.6-fold improvement of the thermal stability compared to the original RGI lyase. Gly55Val was the second best mutation with a thermostability half-life increase of 27 min at 60 °C, and the best mutations following were Glu434Trp, Glu434Phe, and Glu434Tyr, respectively. The data verify the applicability of a combinatorial predictive approach for designing a small site saturation library for improving enzyme thermostability. In addition, new thermostable RGI lyases suitable for enzymatic upgrading of pectinaceous plant biomass materials at elevated temperatures were produced.  相似文献   

2.
A gene encoding a putative rhamnogalacturonan I (RGI) Lyase (EC 4.2.2.-) from Bacillus licheniformis (DSM13) was selected after a homology search and phylogenetic analysis and optimized with respect to codon usage. The designed gene was transformed into Pichia pastoris and the enzyme was produced in the eukaryotic host with a high titer in a 5 l bioreactor. The RGI Lyase was purified by Cu2+ affinity chromatography and 1.1 g pure enzyme was achieved pr. L. When the denatured protein was deglycosylated with EndoH, the molecular weight of the protein decreased to 65 kDa, which correlated with the predicted molecular weight of the mature RGI Lyase of 596 amino acids. By use of a statistical design approach, with potato rhamnogalacturonan as the substrate, the optimal reaction conditions for the RGI Lyase were established to be: 61 °C, pH 8.1, and 2 mM of both Ca2+ and Mn2+ (specific activity 18.4 U/mg; KM 1.2 mg/ml). The addition of both Ca2+ and Mn2+ was essential for enzyme activity. The enzyme retained its catalytic activity at higher temperatures and the enzyme has a half life at 61 °C of 15 min. The work thus demonstrated the workability of in silico based screening coupled with a synthetic biology approach for gene synthesis for identification and production of a thermostable enzyme.  相似文献   

3.
Four alginate lyase genes were cloned and sequenced from the genomic DNAs of deep-sea bacteria, namely members of Vibrio and Agarivorans. Three of them were from Vibrio sp. JAM-A9m, which encoded alginate lyases, A9mT, A9mC, and A9mL. A9mT was composed of 286 amino acids and 57% homologous to AlxM of Photobacterium sp. A9mC (221 amino acids) and A9mL (522 amino acids) had the highest degree of similarity to two individual alginate lyases of Vibrio splendidus with 74% and 84% identity, respectively. The other gene for alginate lyase, A1mU, was shotgun cloned from Agarivorans sp. JAM-A1m. A1mU (286 amino acids) showed the highest homology to AlyVOA of Vibrio sp. with 76% identity. All alginate lyases belong to polysaccharide lyase family 7, although, they do not show significant similarity to one another with 14% to 58% identity. Among the above lyases, the recombinant A9mT was purified to homogeneity and characterized. The molecular mass of A9mT was around 28 kDa. The enzyme was remarkably salt activated and showed the highest thermal stability in the presence of NaCl. A9mT favorably degraded mannuronate polymer in alginate. We discussed substrate specificities of family 7 alginate lyases based on their conserved amino acid sequences.  相似文献   

4.
The gene for a highly alkaline pectate lyase, Pel-4A, from alkaliphilic Bacillus sp. strain P-4-N was cloned, sequenced, and overexpressed in Bacillus subtilis cells. The deduced amino acid sequence of the mature enzyme (318 amino acids, 34 805 Da) showed moderate homology to those of known pectate lyases in the polysaccharide lyase family 1. The purified recombinant enzyme had an isoelectric point of pH 9.7 and a molecular mass of 34 kDa, and exhibited a very high specific activity compared with known pectate lyases reported so far. The enzyme activity was stimulated 1.6 fold by addition of NaCl at an optimum of 100 mM. When Pel-4A was stored at 50°C for 60 h, striking stabilization by 100 mM NaCl was observed in a pH range from 5 to 11.5, whereas it was stable only around pH 11 in the absence of NaCl. Received: June 10, 2000 / Accepted: October 3, 2000  相似文献   

5.
Keratinases are proteolytic enzymes capable of degrading insoluble keratins. The importance of these enzymes is being increasingly recognized in fields as diverse as animal feed production, textile processing, detergent formulation, leather manufacture, and medicine. To enhance the thermostability of Bacillus licheniformis BBE11-1 keratinase, the PoPMuSiC algorithm was applied to predict the folding free energy change (ΔΔG) of amino acid substitutions. Use of the algorithm in combination with molecular modification of homologous subtilisin allowed the introduction of four amino acid substitutions (N122Y, N217S, A193P, N160C) into the enzyme by site-directed mutagenesis, and the mutant genes were expressed in Bacillus subtilis WB600. The quadruple mutant displayed synergistic or additive effects with an 8.6-fold increase in the t 1/2 value at 60 °C. The N122Y substitution also led to an approximately 5.6-fold increase in catalytic efficiency compared to that of the wild-type keratinase. These results provide further insight into the thermostability of keratinase and suggest further potential industrial applications.  相似文献   

6.
The 774-bp pectate lyase gene plyAI4 from Bacillus sp. I4 was cloned and expressed in E. coli. The gene encodes a 257-residue polypeptide (PlyAI4, 28.3 kDa) with the highest identities of 97.3% with a putative pectate lyase from Bacillus subtilis BSn5 (ADV94306) and 60.3% with an identified pectate lyase of the polysaccharide lyase family (PL) 3 from Paenibacillus amylolyticus 27C64 (ADB78774). The purified recombinant PlyAI4 (rPlyAI4) exhibited apparently optimal activity at pH 10.5 ?? 11.0 and 50°C. Compared with the majority of reported alkaline pectate lyases, rPlyAI4 exhibited more residual enzyme activity at 20°C (??45%) or at 70°C (??50%) and better thermostability at 70°C (??60 min half-life at 70°C). In the presence of 20% (v/v) ethanol, pectate lyase activity was enhanced by 0.2 fold. After incubation in 40% (v/v) ethanol at 37°C and pH 8.5 for 1 h, the purified rPelAI4 retained more than 75% of the initial activity. Sequence analysis proposed a new signature block, A-D-G-[V/I]-H, for PL 3 pectate lyases. These properties may prove to be important with regards to PlyAI4 for basic research and industrial application.  相似文献   

7.
The phycocyanin lyase CpcT1 (encoded by gene all5339) and lyase CpcS1 (encoded by gene alr0617) are capable of catalyzing the phycocyanobilin (PCB) covalently bound to the different sites of phycocyanin's and phycoerythrocyanin's β subunits, respectively. Lyase CpcS1, whose catalytic mechanism had been researched clearly, participates in the covalent coupling of phycobilin and apoprotein in the form of chaperone, and its important amino acids have been confirmed. In order to identify the functional amino acid residues of CpcT1, chemical modification was conducted to arginine, histidine, tryptophan, lysine and amino acid carboxyl of CpcT1. The results indicated that the catalytic activity of the CpcT1 was changed. After the modification of arginine, tryptophan and histidine, site-directed mutations were performed to those highly conserved amino acids which were selected by means of homologous comparison. The mutated lyase, apoprotein and the enzymes that synthesize the phycobilins were recombined in Escherichia coli (E. coli) and in vitro, yielding chromoproteins, which were detected by fluorescence and UV absorption spectrometry. The spectra were compared with that of the chromoprotein catalyzed by wild type lyase CpcT1, achieving relative specific activities of the various mutants. Meanwhile, the mutants were expressed in E. coli, and then circular dichroism structure of near-UV region was determined. The results demonstrated that H33F, W175S, R97A, C137S and C116S influence the catalytic activity of CpcT1. Being different from wild CpcT1, a great deal of α helix was involved in the structure of circular dichroism of R97A and W13S. CpcT1 or its mutants and the enzymes that synthesize the phycobilins, were reconstituted in E. coli and detected by spectra to check the bounding of lyases and PCB. The results of spectra and SDS-PAGE confirm that CpcT1 and its mutants cannot bind phycobilin, differing from the catalytic mechanism of CpcS1.  相似文献   

8.
Alkaline phosphatase gene of the bacterium, Bacillus licheniformis MTCC 1483 was cloned and successfully expressed in Escherichia coli BL21 (DE3). Sequence analysis revealed an open reading frame of 1662 bp encoding a 553 amino acid protein with a molecular mass of 62 kDa, as determined by SDS-PAGE. The recombinant enzyme was purified using Ni-NTA affinity column and the purified enzyme showed a specific activity of 24890 U/mg protein, which is the highest value among any other bacterial recombinant alkaline phosphatases reported so far. The enzyme exhibited optimum activity at 50°C and pH 10.0 and showed high thermostability. The recombinant alkaline phosphatase from B. licheniformis MTCC 1483 exhibited a dephosphorylation efficiency of 92.9% to dephosphorylate linear DNA fragments. The recombinant enzyme with high catalytic efficiency and thermostability has the potential for applications in clinical diagnostics which require enzyme stability against thermal deactivation during preparation or labeling procedures.  相似文献   

9.
The major photoproduct in UV-irradiated spore DNA is the unique thymine dimer 5-thyminyl-5,6-dihydrothymine, commonly referred to as spore photoproduct (SP). An important determinant of the high UV resistance of Bacillus subtilis spores is the accurate in situ reversal of SP during spore germination by the DNA repair enzyme SP lyase. To study the molecular aspects of SP lyase-mediated SP repair, the cloned B. subtilis splB gene was engineered to encode SP lyase with a molecular tag of six histidine residues at its amino terminus. The engineered six-His-tagged SP lyase expressed from the amyE locus restored UV resistance to spores of a UV-sensitive mutant B. subtilis strain carrying a deletion-insertion mutation which removed the entire splAB operon at its natural locus and was shown to repair SP in vivo during spore germination. The engineered SP lyase was purified both from dormant B. subtilis spores and from an Escherichia coli overexpression system by nickel-nitrilotriacetic acid (NTA) agarose affinity chromatography and was shown by Western blotting, UV-visible spectroscopy, and iron and acid-labile sulfide analysis to be a 41-kDa iron-sulfur (Fe-S) protein, consistent with its amino acid sequence homology to the 4Fe-4S clusters in anaerobic ribonucleotide reductases and pyruvate-formate lyases. SP lyase was capable of reversing SP from purified SP-containing DNA in an in vitro reaction either when present in a cell-free extract prepared from dormant spores or after purification on nickel-NTA agarose. SP lyase activity was dependent upon reducing conditions and addition of S-adenosylmethionine as a cofactor.  相似文献   

10.
We report the cloning of a Heterodera glycines cDNA that has 72% identity at the amino acid level to a pectate lyase from Globodera rostochiensis. In situ hybridizations showed that the corresponding gene (Hg-pel-1) is expressed in the subventral esophageal gland cells of second-stage juveniles. The deduced amino acid sequence of the H. glycines cDNA shows homology to class III pectate lyases of bacterial and fungal origin.  相似文献   

11.
The pectate lyase gene pelA from alkaliphilic Bacillus licheniformis strain 14A was cloned and sequenced. The nucleotide sequence corresponded to an open reading frame of 1,026 bp that codes for a 39 amino acid signal peptide and a mature protein with a molecular mass of 33,451 Da. The mature PelA showed significant homology to other pectate lyases belonging to polysaccharide lyase family 1, such as enzymes from different Bacillus spp. and Erwinia chrysanthemi. The pelA gene was expressed in Escherichia coli as a recombinant fusion protein containing a C-terminal His-tag, allowing purification to near homogeneity in a one-step procedure. The values for the kinetic parameters K m and V max of the fusion protein were 0.56 g/l and 51 µmol/min, respectively. The activity of purified PelAHis was inhibited in the presence of excess substrate. Characterization of product formation revealed unsaturated trigalacturonate as the main product. The yields of unsaturated trigalacturonic acids were further examined for the substrates polygalacturonic acid, citrus pectin and sugar-beet pectin.  相似文献   

12.
Alginates are commercially valuable and complex polysaccharides composed of varying amounts and distribution patterns of 1–4-linked β-d-mannuronic acid (M) and α-l-guluronic acid (G). This structural variability strongly affects polymer physicochemical properties and thereby both commercial applications and biological functions. One promising approach to alginate fine structure elucidation involves the use of alginate lyases, which degrade the polysaccharide by cleaving the glycosidic linkages through a β-elimination reaction. For such studies one would ideally like to have different lyases, each of which cleaves only one of the four possible linkages in alginates: G-G, G-M, M-G, and M-M. So far no lyase specific for only G-G linkages has been described, and here we report the construction of such an enzyme by mutating the gene encoding Klebsiella pneumoniae lyase AlyA (a polysaccharide lyase family 7 lyase), which cleaves both G-G and G-M linkages. After error-prone PCR mutagenesis and high throughput screening of ∼7000 lyase mutants, enzyme variants with a strongly improved G-G specificity were identified. Furthermore, in the absence of Ca2+, one of these lyases (AlyA5) was found to display no detectable activity against G-M linkages. G-G linkages were cleaved with ∼10% of the optimal activity under the same conditions. The substitutions conferring altered specificity to the mutant enzymes are located in conserved regions in the polysaccharide lyase family 7 alginate lyases. Structure-function analyses by comparison with the known three-dimensional structure of Sphingomonas sp. A1 lyase A1-II′ suggests that the improved G-G specificity might be caused by increased affinity for nonproductive binding of the alternating G-M structure.  相似文献   

13.
Pseudomonas sp. OS-ALG-9 produces several kinds of alginate-degrading enzymes both intra- and extracellularly. As a second alginate lyase of this bacterium, the gene encoding alyII has been cloned in Escherichia coli JM109 by shotgun techniques and then sequenced. The alyII gene has an open reading frame of 2141 bp encoding 713 amino acid residues with a calculated molecular mass of 79,803 Da. The deduced amino acid sequence did not show any extensive similarity with those of other known alginate lyases, however, hydrophobic cluster analysis showed that alyII belonged to class 3 of alginate lyases. The alginate lyase from E. coli harboring the alyII gene showed a single active band, which coincided with one of four major alginate lyases from the crude cell extracts of Pseudomonas sp. OS-ALG-9 on a zymogram.  相似文献   

14.
Active 50 S ribosomal subunits from Bacillus licheniformis and Bacillus subtilis can be reconstituted in vitro from dissociated RNA and proteins. The reconstituted 50 S sub-units are indistinguishable from native 50 S subunits in sedimentation on sucrose gradients and in protein composition. The procedure used is similar to that developed for reconstitution of Bacillus stearothermophilus 50 S subunits, though the optimal conditions are somewhat different. Hybrid ribosomes can be reconstituted with 23 S RNA and proteins from different sources (B. stearothermophilus and B. licheniformis or B. subtilis). The thermal stability of these ribosomes depends on the source of the proteins, and not on the source of 23 S RNA.  相似文献   

15.
Alginate, the most abundant carbohydrate presents in brown macroalgae, has recently gained increasing attention as an alternative biomass for the production of biofuel. Oligoalginate lyases catalyze the degradation of alginate oligomers into monomers, a prerequisite for bioethanol production. In this study, two new oligoalginate lyase genes, oalC6 and oalC17, were cloned from Cellulophaga sp. SY116, and expressed them in Escherichia coli. The deduced oligoalginate lyases, OalC6 and OalC17, belonged to the polysaccharide lyase (PL) family 6 and 17, respectively. Both showed less than 50% amino acid identity with all of the characterized oligoalginate lyases. Moreover, OalC6 and OalC17 could degrade both alginate polymers and oligomers into monomers in an exolytic mode. Substrate specificity studies demonstrated that OalC6 preferred α-L-guluronate (polyG) blocks, while OalC17 preferred poly β-D-mannuronate (polyM) blocks. The combination of OalC6 and OalC17 showed synergistic degradation ability toward both alginate polymers and oligomers. Finally, an efficient process for the production of alginate monomers was established by combining the new-isolated exotype alginate lyases (i.e., OalC6 and OalC17) and the endotype alginate lyase AlySY08. Overall, our work provides new insights for the development of novel biotechnologies for biofuel production from seaweed.  相似文献   

16.
Bacterial alkaline phosphatases (APases), except those isolated from Bacillus licheniformis, are approximately 45-kDa proteins while eucaryotic alkaline phosphatases are 60 kDa. To answer the question of whether the apparent 60-kDa alkaline phosphatase from Bacillus licheniformis accurately reflected the size of the protein, the entire gene was analyzed. DNA sequence analysis of the alkaline phosphatase I (APaseI) gene of B. licheniformis MC14 indicated that the gene could code for a 60-kDa protein of 553 amino acids. The deduced protein sequence of APaseI showed about 32% identity to those of B. subtilis APase III and IV and had apparent sequence homologies in the core structure and active sites that are conserved among APases of various sources. The extra carboxy-terminal sequence of APaseI, which made the enzyme bigger than other procaryotic APases, was not homologous to those of eucaryotic APases. The amino acid composition of APaseI was most similar to that of salt-dependent APase among the isozymes of B. licheniformis MC14. Another open reading frame of 261 amino acids was present 142 nucleotide upstream of the APaseI gene and its predicted amino acid sequence showed 68% identity to that of glucose dehydrogenase of B. megaterium.  相似文献   

17.
A bacterium (strain A1) isolated from a ditch synthesized three types of intracellular alginate lyases: A1-I (molecular weight [M.W.] 60,000), A1-II-2 (M.W. 25,000) and A1-III (M.W. 38,000). The nucleotide sequence of the gene for A1-I lyase, which has been cloned in Escherichia coli DH1 was determined. The open reading frame of the gene encoded 622 amino acids with a calculated M.W. of 69,153. The N-terminal amino acid sequence of A1-I lyase purified from strain A1 or E. coli DH1 cells transformed with the A1-I lyase gene was consistent with the deduced sequence from 55His to 74Ala, indicating that the A1-I lyase was synthesized as a precursor with a M.W. of 69,153 and then processed to a mature form with a M.W. of 63,681. The N-terminal sequence of the first twenty amino acids of A1-III lyase was found to match that of A1-I lyase. The N-terminal sequence of the first twenty amino acids of A1-II-2 lyase was consistent with the deduced amino acid sequence from 414Ala to 433Val in the nucleotide sequence of the A1-I lyase gene. These results indicated that the A1-I lyase was further processed to generate A1-II-2 and A1-III lyase species.  相似文献   

18.
Citrate lyase (EC 4.1.3.6) was purified 38-fold from cell-free extracts of Streptococcus diacetilactis. The enzyme was homogeneous in analytical ultracentrifugation and polyacrylamide gel electrophoresis The final enzyme preparation contained acetate: HS-citrate lyase ligase—an acetylating enzyme which converts inactive HS-citrate lyase into enzymatically active acetyl-S-citrate lyase. This enzyme activity was purified 25-fold over the crude extract and seemed to be associated with citrate lyase. Partially purified citrate lyase from Leuconostoc citrovorum contained also its acetylating enzyme. Purified citrate lyases from Klebsiella aerogenes and Rhodopseudomonas gelatinosa were devoid of acetylating enzyme activity. The HS-form of citrate lyase from S. diacetilactis was completely acetylated and hence activated by incubation with ATP and acetate for 25 min at 25° C. The enzyme did not acetylate the HS-lyases from R. gelatinosa and K. aerogenes. In contrast to the citrate lyases from R. gelatinosa and K. aerogenes the enzymes from S. diacetilactis and L. citrovorum showed onlya very weak reaction inactivation. It is assumed that this is due to the association of the acetylating enzymes with these lyases.  相似文献   

19.
Phoma exigua associated with seed-rot ofVigna radiata produced lyases which varied with the media tested. The production of lyases was higher in pectin-supplemented media.Vigna seed meal medium was not suitable for induction of lyase production. The pectin lyase and pectate lyase was maximum after 11 d of incubation by which time the pH was shifted to alkaline side. Temperature of 25 °C and pH 9 was found to be optimum for the activity of pectin lyase and pectate lyase. Fungicides (antracol and panoctine), phenols (pyrocatechol and gallic acid) and growth substances (gibberellic acid and yeast extract) adversely affected the enzyme secretion.  相似文献   

20.
《Journal of molecular biology》2019,431(24):4897-4909
Alginate lyases, which are important in both basic and applied sciences, fall into ten polysaccharide lyase (PL) families. PL36 is a newly established family that includes 39 bacterial sequences and one eukaryotic sequence. Till now, the structures or catalytic mechanisms of PL36 alginate lyases have yet to be revealed. Here, we characterized a novel PL36 alginate lyase, Aly36B, from Chitinophaga sp. MD30. Aly36B is a polymannuronate specific endolytic alginate lyase. To probe the catalytic mechanism of Aly36B, the structures of wild-type Aly36B and its mutants (K143A/Y185A in complex with alginate tetrasaccharide and K143A/M171A with trisaccharide) were solved. The overall structure of Aly36B belongs to the β-jelly roll scaffold, adopting a typical β-sandwich fold. Aly36B contains a Ca2+, which is far away from the active center and plays an important role in stabilizing the structure of Aly36B. Based on structural and mutational analyses, the catalytic mechanism of Aly36B for alginate degradation was explained. During catalysis, Arg169, Tyr185, and Tyr187 are responsible for neutralizing the negative charge of the substrate, and Lys143 acts as both the catalytic base and the catalytic acid, which represents a new kind of catalytic mechanism of alginate lyases. Sequence alignment shows that these four residues involved in catalysis are highly conserved in all PL36 sequences, suggesting that PL36 alginate lyases may adopt a similar catalytic mechanism. Taken together, this study reveals the molecular structure and catalytic mechanism of a PL36 alginate lyase, broadening our knowledge on alginate lyases and facilitating future biotechnological applications of PL36 alginate lyases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号