首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study revealed that cellulose enzymatic saccharification response curves of lignocellulosic substrates were very different from those of pure cellulosic substrates in terms of optimal pH and pH operating window. The maximal enzymatic cellulose saccharification of lignocellulosic substrates occurs at substrate suspension pH 5.26.2, not between pH 4.8 and 5.0 as exclusively used in literature using T. reesi cellulase. Two commercial cellulase enzyme cocktails, Celluclast 1.5L and CTec2 both from Novozymes, were evaluated over a wide range of pH. The optimal ranges of measured suspension pH of 5.2–5.7 for Celluclast 1.5L and 5.5–6.2 for CTec2 were obtained using six lignocellulosic substrates produced by dilute acid, alkaline, and two sulfite pretreatments to overcome recalcitrance of lignocelluloses (SPORL) pretreatments using both a softwood and a hardwood. Furthermore, cellulose saccharification efficiency of a SPORL-pretreated lodgepole pine substrate showed a very steep increase between pH 4.7 and 5.2. Saccharification efficiency can be increased by 80 % at cellulase loading of 11.3 FPU/g glucan, i.e., from approximately 43 to 78 % simply by increasing the substrate suspension pH from 4.7 to 5.2 (buffer solution pH from 4.8 to 5.5) using Celluclast 1.5L, or by 70 % from approximately 51 to 87 % when substrate suspension pH is increased from 4.9 to 6.2 (buffer solution pH from 5.0 to 6.5) using CTec2. The enzymatic cellulose saccharification response to pH is correlated to the degree of substrate lignin sulfonation. The difference in pH-induced lignin surface charge, and therefore surface hydrophilicity and lignin–cellulase electrostatic interactions, among different substrates with different lignin content and structure is responsible for the reported different enhancements in lignocellulose saccharification at elevated pH.  相似文献   

2.
Microbial degradation of lignocellulosic biomass is primarily affected by the composition and structure of biomass, as well as enzyme activities that are influenced by the presence of in-process degradation products. This study focuses on the latter, and demonstrates that cellulase activity of Neurospora discreta is stimulated in the presence of in-process soluble lignin degradation products. Two types of biomass - cocopeat and sugarcane bagasse, with contrasting lignin content and cellulose structure were tested at two biomass loadings each. At the higher biomass loading, cocopeat showed the highest amount of hydrolyzed cellulose and cellulase activity, despite its low cellulose content and recalcitrant cellulose structure. A strong positive correlation was revealed between the amount of in-process degraded lignin and cellulase activity, indicating a stimulatory effect on cellulase, which contradicts most previous literature. Furthermore, the causal relationship between the amount of degraded lignin and cellulase activity was established in a model system of commercial cellulase and standard soluble lignin. This work could pave the way for using biomass loading as a process lever to enhance cellulose hydrolysis in microbial conversion of lignocellulosic biomass.  相似文献   

3.
The potential of cellulase enzymes in the developing and ongoing “biorefinery” industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates.  相似文献   

4.
The conversion of lignocellulosic biomass to fuel ethanol typically involves a disruptive pretreatment process followed by enzyme-catalyzed hydrolysis of the cellulose and hemicellulose components to fermentable sugars. Attempts to improve process economics include protein engineering of cellulases, xylanases and related hydrolases to improve their specific activity or stability. However, it is recognized that enzyme performance is reduced during lignocellulose hydrolysis by interaction with lignin or lignin-carbohydrate complex (LCC), so the selection or engineering of enzymes with reduced lignin interaction offers an alternative means of enzyme improvement. This study examines the inhibition of seven cellulase preparations, three xylanase preparations and a beta-glucosidase preparation by two purified, particulate lignin preparations derived from softwood using an organosolv pretreatment process followed by enzymatic hydrolysis. The two lignin preparations had similar particle sizes and surface areas but differed significantly in other physical properties and in their chemical compositions determined by a 2D correlation HSQC NMR technique and quantitative 13C NMR spectroscopy. The various cellulases differed by up to 3.5-fold in their inhibition by lignin, while the xylanases showed less variability (< or = 1.7-fold). Of all the enzymes tested, beta-glucosidase was least affected by lignin.  相似文献   

5.
A new cellulolytic strain of Chryseobacterium genus was screened from the dung of a cattle fed with cereal straw. A putative cellulase gene (cbGH5) belonging to glycoside hydrolase family 5 subfamily 46 (GH5_46) was identified and cloned by degenerate PCR plus genome walking. The CbGH5 protein was overexpressed in Pichia pastoris, purified and characterized. It is the first bifunctional cellulase–xylanase reported in GH5_46 as well as in Chryseobacterium genus. The enzyme showed an endoglucanase activity on carboxymethylcellulose of 3237 μmol min?1 mg?1 at pH 9, 90 °C and a xylanase activity on birchwood xylan of 1793 μmol min?1 mg?1 at pH 8, 90 °C. The activity level and thermophilicity are in the front rank of all the known cellulases and xylanases. Core hydrophobicity had a positive effect on the thermophilicity of this enzyme. When similar quantity of enzymatic activity units was applied on the straws of wheat, rice, corn and oilseed rape, CbGH5 could obtain 3.5–5.0× glucose and 1.2–1.8× xylose than a mixed commercial cellulase plus xylanase of Novozymes. When applied on spent mushroom substrates made from the four straws, CbGH5 could obtain 9.2–15.7× glucose and 3.5–4.3× xylose than the mixed Novozymes cellulase+xylanase. The results suggest that CbGH5 could be a promising candidate for industrial lignocellulosic biomass conversion.  相似文献   

6.
By comparing different activity data of the buffered cellulase solution before and after contact with the substrate the interaction between Penicillium janthinellum cellulase and wheat straw, resp. its components (holocellulose and isolated lignin) has been investigated. The loss of activity due to sorption or denaturation has been found to differ widely between the different activity data and between the various substrates. A remarkable loss of enzyme activity was observed after contact with isolated straw lignin. The differences in activity decrease between the cellulose and the lignin moiety were found to be largent with the cellobiase activity.  相似文献   

7.
Cryptococcus sp. S-2 carboxymethyl cellulase (CSCMCase) is active in the acidic pH and lacks a binding domain. The absence of the binding domain makes the enzyme inefficient against insoluble cellulosic substrates. To enhance its binding affinity and its cellulolytic activity to insoluble cellulosic substrates, cellulose binding domain (CBD) of cellobiohydrolase I (CBHI) from Trichoderma reesei belonging to carbohydrate binding module (CBM) family 1 was fused at the C-terminus of CSCMCase. The constructed fusion enzymes (CSCMCase-CBD and CSCMCase-2CBD) were expressed in a newly recombinant expression system of Cryptococcus sp. S-2, purified to homogeneity, and then subject to detailed characterization. The recombinant fusion enzymes displayed optimal pH similar to those of the native enzyme. Compared with rCSCMCase, the recombinant fusion enzymes had acquired an increased binding affinity to insoluble cellulose and the cellulolytic activity toward insoluble cellulosic substrates (SIGMACELL® and Avicel) was higher than that of native enzyme, confirming the presence of CBDs improve the binding and the cellulolytic activity of CSCMCase on insoluble substrates. This attribute should make CSCMCase an attractive applicant for various application.  相似文献   

8.
This study evaluated the potential use of elephant grass biomass, a highly productive species, for cellulase and xylanase production by the cellulolytic mutant Penicillium echinulatum 9A02S1 in submerged cultivation, using untreated biomass, biomass pretreated with different concentrations of NaOH, H2SO4 or NH4OH, or biomass pretreated with H2O at 121 °C. For filter paper activity, all cultivation carried out with pretreated elephant grass under the evaluated conditions showed superior activity when compared with the control (untreated elephant grass). The activities of endoglucanases and β-glucosidases were higher in the cultivation prepared from pretreated samples than the control made with cellulose (Celuflok®). Without pretreatment, elephant grass can be used for xylanase production, enabling similar activities to those obtained in the cultivation with cellulose, reducing the enzyme production cost. These results indicate that the pretreatment of elephant grass, especially when pretreated with H2SO4, may be used as a partial or total replacement for cellulose to cellulase production, and untreated elephant grass may be used for xylanase production.  相似文献   

9.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
Lignin plays an important functional and structural role in plants, but also contributes to the recalcitrance of lignocellulosic biomass to hydrolysis. This study addresses the influence of lignin in hydrolysis of sugarcane bagasse from conventional bred lines (UFV260 and UFV204) that were selected from 432 field-grown clones. In addition to higher sugar production, bagasse clone UFV204 had a small, but statistically significant, lower insoluble lignin content compared with clone UFV260 (15.5% vs, 16.6%) and also exhibited a significantly higher cellulose conversion to glucose (81.3% vs. 63.3%) at a cellulase loading of 5 (filter paper unit) FPU/g of glucan or 3 FPU/g total solids for liquid hot water pretreated bagasse (200°C, 10 min). The enzyme loading was further decreased by 50% to 2.5 FPU/g glucan and resulted in a similar glucan conversion (88.5%) for clone UFV204 when the bagasse was preincubated with bovine serum albumin at pH 4.8 and nonproductive binding of cellulase components was blocked. Comparison of Langmuir adsorption isotherms and differential adsorption of the three major cellulolytic enzyme components endoglucanase, cellobiohydrolase, and β-glucosidase help to explain differences due to lignin content.  相似文献   

11.
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorption of cellulase on Avicel, and of cellulase and xylanase on corn stover solids resulting from ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) pretreatments were measured at 4°C. Langmuir adsorption parameters were then estimated by non‐linear regression using Polymath software, and cellulase accessibility to cellulose was estimated based on adsorption data for pretreated solids and lignin left after carbohydrate digestion. To determine the impact of delignification and deacetylation on cellulose accessibility, purified CBHI (Cel7A) adsorption at 4°C and hydrolysis with whole cellulase were followed for untreated (UT) corn stover. In all cases, cellulase attained equilibrium in less than 2 h, and upon dilution, solids pretreated by controlled pH technology showed the greatest desorption followed by solids from dilute acid and SO2 pretreatments. Surprisingly, the lowest desorption was measured for Avicel glucan followed by solids from AFEX pretreatment. The higher cellulose accessibility for AFEX and lime pretreated solids could account for the good digestion reported in the literature for these approaches. Lime pretreated solids had the greatest xylanase capacity and AFEX solids the least, showing pretreatment pH did not seem to be controlling. The 24 h glucan hydrolysis rate data had a strong relationship to cellulase adsorption capacities, while 24 h xylan hydrolysis rate data showed no relationship to xylanase adsorption capacities. Furthermore, delignification greatly enhanced enzyme effectiveness but had a limited effect on cellulose accessibility. And because delignification enhanced release of xylose more than glucose, it appears that lignin did not directly control cellulose accessibility but restricted xylan accessibility which in turn controlled access to cellulose. Reducing the acetyl content in corn stover solids significantly improved both cellulose accessibility and enzyme effectiveness. Biotechnol. Bioeng. 2009;103: 252–267. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Attempts to correlate the physical and chemical properties of biomass to its susceptibility to enzyme digestion are often inconclusive or contradictory depending on variables such as the type of substrate, the pretreatment conditions and measurement techniques. In this study, we present a direct method for measuring the key factors governing cellulose digestibility in a biomass sample by directly probing cellulase binding and activity using a purified cellobiohydrolase (Cel7A) from Trichoderma reesei. Fluorescence-labeled T. reesei Cel7A was used to assay pretreated corn stover samples and pure cellulosic substrates to identify barriers to accessibility by this important component of cellulase preparations. The results showed cellulose conversion improved when T. reesei Cel7A bound in higher concentrations, indicating that the enzyme had greater access to the substrate. Factors such as the pretreatment severity, drying after pretreatment, and cellulose crystallinity were found to directly impact enzyme accessibility. This study provides direct evidence to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose.  相似文献   

13.

Background

Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE) is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS) cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner.

Results

Two hydrolysis modes were examined, enzymatic hydrolysis (EH) of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF) of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA) assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B') exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison.

Conclusions

This study provides extensive information about the performance of four precommercial cellulase preparations. Though test conditions were not necessarily optimal for some of the enzymes, all were able to effectively saccharify PCS cellulose. Large differences in the estimated enzyme dosage requirements depending on the assay used to measure protein concentration highlight the need for better consensus methods to quantify enzyme protein.
  相似文献   

14.
Enzymatic hydrolysis of lignocellulosic biomass is limited by rapid cellulase deactivation, consequently requiring large amounts of enzyme to maintain acceptable biomass conversion. In this study, a new approach to improve lignocellulose hydrolysis was investigated. Performing enzymatic hydrolysis of corn stover (CS) in the presence of polymeric–surfactant micelles (PMs) was demonstrated to improve hydrolysis yield to a greater extent than using only surfactant micelles. Application of 2 % (w/w) of polyethylene glycol (PEG 6000) with casein, Tween-20, and Triton X-100 at levels above the critical micelle concentrations increased the hydrolysis yield of CS containing high-bound lignin (extrusion-pretreated) by up to 87.8, 11.7, and 7.5 %, respectively. These PMs were not effective during enzymatic hydrolysis of biomass lacking lignin (Avicel) or alkali-pretreated CS (7.2 % lignin). The main reasons for the enhanced cellulase activity observed due to PEG-casein, PEG-Tween, and PEG-Triton were enhanced cellulase solubilization; reformation of α-helix substructure; and combination of induced cellulase solubilization, α-helix reformation, and chemical changes in the microstructure of biomass, respectively. Deformation of the cellulase substructure during hydrolysis of biomass and its subsequent reformation in the presence of surfactants were shown in this study for the first time. Chemical changes in the microstructure of biomass (e.g., lignin side changes, C–O bonds, and amorphous cellulose) were found to be another potential reason for the effectiveness of surfactants when they are incubated at above 6 g/L for 72 h with biomass.  相似文献   

15.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

16.
The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied. The cultures of the Penicillium strains were characterized by high cellulase and β-glucosidase as well moderate xylanase activities compared to the Trichoderma reesei reference strains QM 6a and RUTC30 (volumetric or per secreted protein, respectively). Comparison of the novel Penicillium and T. reesei secreted enzyme mixtures in the hydrolysis of (ligno)cellulose substrates showed that the F-2220 enzyme mixture gave higher yields in the hydrolysis of crystalline cellulose (Avicel) and similar yields in hydrolysis of pre-treated spruce and wheat straw than enzyme mixture secreted by the T. reesei reference strain. The sensitivity of the Penicillium cellulase complexes to softwood (spruce) and grass (wheat straw) lignins was lignin and temperature dependent: inhibition of cellulose hydrolysis in the presence of wheat straw lignin was minor at 35 °C while at 45 °C by spruce lignin a clear inhibition was observed. The two main proteins in the F-2220 (hemi)cellulase complex were partially purified and identified by peptide sequence similarity as glycosyl hydrolases (cellobiohydrolases) of families 7 and 6. Adsorption of the GH7 enzyme PpCBH1 on cellulose and lignins was studied showing that the lignin adsorption of the enzyme is temperature and pH dependent. The ppcbh1 coding sequence was obtained using PCR cloning and the translated amino acid sequence of PpCBH1 showed up to 82% amino acid sequence identity to known Penicillium cellobiohydrolases.  相似文献   

17.
The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsvaerd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably cellobiohydrolases (CBHs) and endo-1,4-beta-glucanases (EGs). Since the original T. reesei strain was isolated from decaying canvas, the T. reesei CBH and EG activities might be present in suboptimal ratios for hydrolysis of pretreated lignocellulosic substrates. We employed statistically designed combinations of the four main activities of Celluclast 1.5, CBHI, CBHII, EGI, and EGII, to identify the optimal glucose-releasing combination of these four enzymes to degrade barley straw substrates subjected to three different pretreatments. The data signified that EGII activity is not required for efficient lignocellulose hydrolysis when addition of this activity occurs at the expense of the remaining three activities. The optimal ratios of the remaining three enzymes were similar for the two pretreated barley samples that had been subjeced to different hot water pretreatments, but the relative levels of EGI and CBHII activities required in the enzyme mixture for optimal hydrolysis of the acid-impregnated, steam-exploded barley straw substrate were somewhat different from those required for the other two substrates. The optimal ratios of the cellulolytic activities in all cases differed from that of the cellulases secreted by T. reesei. Hence, the data indicate the feasibility of designing minimal enzyme mixtures for pretreated lignocellulosic biomass by careful combination of monocomponent enzymes. This strategy can promote both a more efficient enzymatic hydrolysis of (ligno)cellulose and a more rational utilization of enzymes.  相似文献   

18.
A low temperature alkali pretreatment method was proposed for improving the enzymatic hydrolysis efficiency of lignocellulosic biomass for ethanol production. The effects of the pretreatment on the composition, structure and enzymatic digestibility of sweet sorghum bagasse were investigated. The mechanisms involved in the digestibility improvement were discussed with regard to the major factors contributing to the biomass recalcitrance. The pretreatment caused slight glucan loss but significantly reduced the lignin and xylan contents of the bagasse. Changes in cellulose crystal structure occurred under certain treatment conditions. The pretreated bagasse exhibited greatly improved enzymatic digestibility, with 24-h glucan saccharification yield reaching as high as 98% using commercially available cellulase and β-glucosidase. The digestibility improvement was largely attributed to the disruption of the lignin-carbohydrate matrix. The bagasse from a brown midrib (BMR) mutant was more susceptible to the pretreatment than a non-BMR variety tested, and consequently gave higher efficiency of enzymatic hydrolysis.  相似文献   

19.
The relationship between the physicochemical properties of lignocellulosic substrates and enzyme digestion is still not well known. After different pretreatments, cellulase hydrolysis and measurements of physicochemical characteristics by column solute exclusion, particle size analysis, X‐ray diffraction, Fourier transform infrared spectroscopy and solid state 13C nuclear magnetic resonance were performed in this study. Partial least squares was then applied to seek the key factors limiting the rate and extent of cellulose digestion. According to the PLS results, the most important factor for cellulose digestion was accessible interior surface area, followed by delignification and the destruction of the hydrogen bonds. The cellulose digestion at 2 and 24 hr were improved with the increased accessibility of interior surface area to the reporter molecules of 5.1‐nm diameter. Removal of lignin and breaking of hydrogen bonds were also found to significantly promote cellulose conversion. Other properties, including the breakdown of intramolecular hydrogen bonds, cellulose crystallinity, and hemicellulose content, had less effect on the efficiency of enzymatic hydrolysis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
One of the main challenges for the deployment of lignocellulosic biorefineries in future years is to find renewable and secured biomass sources in order to obtain bio-sourced products, as an alternative to petroleum-based commodities. Grass biomass, considering its characteristics (availability, composition, productivity, possibility of being harvested from both arable (post-harvest residues) and non-agricultural lands), can be considered as a biomass source for the future. Nevertheless, because of its complex structure and composition, which need deconstructive pre-treatments to render possible further biological conversions, grasses utilisation in biorefinery is today not widespread. Indeed, recalcitrance to polymers degradation in grasses concerns structural and compositional characteristics and can result in costly and complicated biorefinery processes. Grass recalcitrance is due to various natural factors strongly related and difficult to dissociate: rind and vascular structures; composition (lignin content is a key factor for cellulose hydrolysis acting like a physical barrier while hemicelluloses seem to play a more significant role in woody biomass than in grass plants); physical structures (crystalline nature and insoluble surface of cellulose, specific surface area, particle size), etc. Physico-chemical pretreatments are efficient solutions to overcome recalcitrance, while phenotypic selections are interesting but not efficient enough to obtain an optimal enzymatic hydrolysis. In some cases, the structural elements of grass biomass can be negatively affected by physico-chemical pretreatments, causing pre-treatment-induced recalcitrance, like cellulose hornification (irreversible alteration of cellulose microfibers), vascular structure collapsed and reduced cellulose bioaccesibility to enzymes due to cellulose covering by lignin, following lignin solubilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号