首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subsequent to the discovery that RNA can have site specific cleavage activity, there has been a great deal of interest in the design and testing of trans-acting catalytic RNAs as both surrogate genetic tools and as therapeutic agents. We have been developing catalytic RNAs or ribozymes with target specificity for HIV-1 RNA and have been exploring chemical synthesis as one method for their production. To this end, we have chemically synthesized and experimentally analyzed chimeric catalysts consisting of DNA in the non-enzymatic portions, and RNA in the enzymatic core of hammerhead type ribozymes. Substitutions of DNA for RNA in the various stems of a hammerhead ribozyme have been analyzed in vitro for kinetic efficiency. One of the chimeric ribozymes used in this study, which harbors 24 bases of DNA capable of base-pairing interactions with an HIV-1 gag target, but maintains RNA in the catalytic center and in stem-loop II, has a sixfold greater kcat value than the all RNA counterpart. This increased activity appears to be the direct result of enhanced product dissociation. Interestingly, a chimeric ribozyme in which stem-loop II (which divides the catalytic core) is comprised of DNA, exhibited a marked reduction in cleavage activity, suggesting that DNA in this region of the ribozyme can impart a negative effect on the catalytic function of the ribozyme. DNA-RNA chimeric ribozymes transfected by cationic liposomes into human T-lymphocytes are more stable than their all-RNA counterparts. Enhanced catalytic turnover and stability in the absence of a significant effect on Km make chimeric ribozymes favorable candidates for therapeutic agents.  相似文献   

2.
In vitro selection experiments show first and foremost that it is possible that functional nucleic acids can arise from random sequence libraries. Indeed, even simple sequence and structural motifs can prove to be robust binding species and catalysts, indicating that it may have been possible to transition from even the earliest self-replicators to a nascent, RNA-catalyzed metabolism. Because of the diversity of aptamers and ribozymes that can be selected, it is possible to construct a 'fossil record' of the evolution of the RNA world, with in vitro selected catalysts filling in as doppelgangers for molecules long gone. In this way a plausible pathway from simple oligonucleotide replicators to genomic polymerases can be imagined, as can a pathway from basal ribozyme activities to the ribosome. Most importantly, though, in vitro selection experiments can give a true and quantitative idea of the likelihood that these scenarios could have played out in the RNA world. Simple binding species and catalysts could have evolved into other structures and functions. As replicating sequences grew longer, new, more complex functions or faster catalytic activities could have been accessed. Some activities may have been isolated in sequence space, but others could have been approached along large, interconnected neutral networks. As the number, type, and length of ribozymes increased, RNA genomes would have evolved and eventually there would have been no area in a fitness landscape that would have been inaccessible. Self-replication would have inexorably led to life.  相似文献   

3.
The Hepatitis Delta Virus (HDV) ribozyme, which is well adapted to the environment of the human cell, is an excellent candidate for the future development of gene-inactivation systems. On top of this, a new generation of HDV ribozymes now exists that benefits from the addition of a specific on/off adaptor (specifically the SOFA-HDV ribozymes) which greatly increases both the ribozyme's specificity and its cleavage activity. Unlike RNAi and hammerhead ribozymes, the designing of SOFA-HDV ribozymes to cleave, in trans, given RNA species has never been the object of a systematic optimization study, even with their recent use for the gene knockdown of various targets. This report aims at both improving and clarifying the design process of SOFA-HDV ribozymes. Both the ribozyme and the targeted RNA substrate were analyzed in order to provide new criteria that are useful in the selection of the most potent SOFA-HDV ribozymes. The crucial features present in both the ribozyme's biosensor and blocker, as well as at the target site, were identified and characterized. Simple rules were derived and tested using hepatitis C virus NS5B RNA as a model target. Overall, this method should promote the use of the SOFA-HDV ribozymes in a plethora of applications in both functional genomics and gene therapy.  相似文献   

4.
5.
Isolating the core functional elements of an RNA is normally performed during the characterization of a new RNA in order to simplify further biochemical analysis. The removal of extraneous sequence is challenging and can lead to biases that result from the incomplete sampling of deletion variants. An impartial solution to this problem is to construct a library containing a large number of deletion constructs and to select functional RNA isolates that are at least as efficient as their full-length progenitors. Here, we use nonhomologous recombination and selection to isolate the catalytic core of a pyrimidine nucleotide synthase ribozyme. A variable-length pool of approximately 10(8) recombinant molecules that included deletions, inversions, and translocations of a 271-nucleotide-long ribozyme isolate was constructed by digesting and randomly religating its DNA genome. In vitro selection for functional ribozymes was then performed in a size-dependent and a size-independent manner. The final pools had nearly equivalent catalytic rates even though their length distributions were completely different, indicating that a diverse range of deletion constructs were functionally active. Four short sequence islands, requiring as little as 81 nt of sequence, were found within all of the truncated ribozymes and could be folded into a secondary structure consisting of three helix-loops. Our findings suggest that nonhomologous recombination is a highly efficient way to isolate a ribozyme's core motif and could prove to be a useful method for evolving new ribozyme functions from pre-existing sequences in a manner that may have played an important role early in evolution.  相似文献   

6.
The potential utility of catalytic RNAs and DNAs (ribozymes and deoxyribozymes, respectively) as reagents in molecular biology as well as therapeutic agents for a variety of human diseases, has long been recognized. Although naturally occurring RNA-cleaving ribozymes are typically not subject to feedback control, rational methodologies for the creation of allosteric ribozymes, by functional combination of ribozyme and ligand-responsive aptamer RNA elements, have existed for some years. Here, we report the in vitro selection of RNA aptamers specific for binding one but not the other of two light-induced isomers of a dihydropyrene photo-switch compound, and the utilization of such an aptamer for the construction of the UG-dihydropyrene ribozyme, an allosteric hammerhead ribozyme whose catalysis is controllable by irradiation with visible versus ultraviolet light. In the presence of micromolar concentrations of the photo-switch compound, the ribozyme behaves as a two-state switch, exhibiting a >900-fold difference in catalytic rates between the two irradiation regimes. We anticipate that the UG-dihydropyrene, and other ribozymes like it, may find significant application in the developmental biology of model organisms such as Drosophila melanogaster and Caenorhabditis elegans, as well as in the biomedical sciences.  相似文献   

7.
Kim KS  Choi WH  Choi BR  Oh S  Yea SS  Yoon MY  Kim DE 《FEBS letters》2007,581(21):4065-4072
Self-replication process of the RNA ligase ribozyme molecules was investigated by using the modified RNA ligase ribozyme under alternating temperature condition that enhances turnover rate of the RNA ligation reaction. In our experiment, the RNA ligase ribozyme system mainly undergoes a cross-catalytic replication process, in which two ribozymes catalyze each other's synthesis from a total of four RNA substrates under alternating temperature condition, resulting in time-dependent accumulation of additional copies of the starting ribozymes in a reaction mixture. The present study demonstrates that cross-catalytic replication in nucleic acids system can be efficiently devised under the alternating temperature condition.  相似文献   

8.
We have utilized in vitro selection technology to develop allosteric ribozyme sensors that are specific for the small molecule analytes caffeine or aspartame. Caffeine- or aspartame-responsive ribozymes were converted into fluorescence-based RiboReporter™ sensor systems that were able to detect caffeine or aspartame in solution over a concentration range from 0.5 to 5 mM. With read-times as short as 5 min, these caffeine- or aspartame-dependent ribozymes function as highly specific and facile molecular sensors. Interestingly, successful isolation of allosteric ribozymes for the analytes described here was enabled by a novel selection strategy that incorporated elements of both modular design and activity-based selection methods typically used for generation of catalytic nucleic acids.  相似文献   

9.
Ribozymes in the age of molecular therapeutics   总被引:4,自引:0,他引:4  
Ribozymes are RNA molecules capable of sequence-specific cleavage of other RNA molecules. Since the discovery of the first group I intron ribozyme in 1982, new classes of ribozymes, each with their own unique reaction, target site specifications, and potential applications, have been identified. These include hammerhead, hairpin, hepatitis delta, varkud satellite, groups I and II intron, and RNase P ribozymes, as well as the ribosome and spliceosome. Meanwhile, ribozyme engineering has enabled the in vitro selection of synthetic ribozymes with unique properties. This, along with advances in ribozyme delivery methods and expression systems, has led to an explosion in the potential therapeutic applications of ribozymes, whether for anti-cancer or anti-viral therapy, or for gene repair.  相似文献   

10.
Since their discovery in the 1980s, it has gradually become apparent that there are several functional classes of naturally occurring ribozymes. These include ribozymes that mediate RNA splicing (the Group I and Group II introns, and possibly the RNA components of the spliceosome), RNA processing ribozymes (RNase P, which cleaves precursor tRNAs and other structural RNA precursors), the peptidyl transferase center of the ribosome, and small, self-cleaving genomic ribozymes (including the hammerhead, hairpin, HDV and VS ribozymes). The most recently discovered functional class of ribozymes include those that are embedded in the untranslated regions of mature mRNAs that regulate the gene's translational expression. These include the prokaryotic glmS ribozyme, a bacterial riboswitch, and a variant of the hammerhead ribozyme, which has been found embedded in mammalian mRNAs. With the discovery of a mammalian riboswitch ribozyme, the question of how an embedded hammerhead ribozyme's switching mechanism works becomes a compelling question. Recent structural results suggest several possibilities.  相似文献   

11.
The development of safe and effective antiviral agents has been a slow process, largely because of the difficulty in distinguishing between virus and host functions; materials toxic to the virus are frequently harmful also to the host in which the agent resides. Recently, techniques which target nucleic acid sequences as a means of reducing gene expression have emerged. This antisense armamentarium includes ribozymes, RNA enzymes which cleave other RNA molecules in a sequence-specific manner. We wish to assess the ability of ribozymes to control animal virus infection. Reasoning that the viruses most vulnerable to ribozyme intervention will be those whose complete life cycle is based on RNA (with no DNA stage), we have begun to develop ribozymes directed toward lymphocytic choriomeningitis virus (LCMV), the prototype of the arenavirus family. Using ribozymes of the hammerhead variety, we have identified several sites on the LCMV genome which can be efficiently cleaved in trans. The efficiency of cleavage is site dependent, and we demonstrate that secondary structure at the target site can abolish ribozyme cleavage. Computer-assisted analysis indicates that much of the LCMV genome may be involved in base pairing, which may render it similarly resistant to ribozyme attack. The few remaining open regions of LCMV lack a GUC target site, on which most studies to date have relied. Here we show that AUC, CUC, and AUU are alternative sites which can be cleaved by trans-acting ribozymes. This finding is important given the aforementioned restriction of available sites, imposed by secondary structure.  相似文献   

12.
Today, many nucleic acid enzymes are used in gene therapy and gene regulations. However, no simple assay methods to evaluate enzymatic activities, with which we judge the enzyme design, have been reported. Here, we propose a new simple competition assay for nucleic acid enzymes of different types to evaluate the cleaving efficiency of a target RNA molecule, of which the recognition sites are different but overlapped. Two nucleic acid enzymes were added to one tube to make a competition of these two enzymes for one substrate. The assay was used on two ribozymes, hammerhead ribozyme and hairpin ribozyme, and a DNA-enzyme. We found that this assay method is capable of application to those enzymes, as a powerful tool for the selection and designing of RNA-cleaving enzymes.  相似文献   

13.
14.
TNA (alpha-L-threose nucleic acids) is potentially a natural nucleic acid, that might have acted as an evolutionary alternative of RNA. We determined the catalytic activity of hammerhead ribozymes containing a threofuranosyl-modified nucleoside at position U4 and U7, and compared these results with those obtained from HNA (hexitol nucleic acids) insertion into the same ribozyme. Our experiments showed that, although the threofuranosyl-modified ribozymes still cleave the substrate strand, cleavage activity is highly decreased. It, therefore, seems that TNA can play a functional role in the RNA world, but only to a limited extent.  相似文献   

15.
16.
We previously isolated from random sequences ribozymes able to form a glycosidic linkage between a ribose sugar and 4-thiouracil in a reaction that mimics protein-catalyzed nucleotide synthesis. Here we report on two serial in vitro selection experiments that defined the core motif of one of the nucleotide synthase ribozymes and provided improved versions of this ribozyme. The first selection experiment started from a degenerate sequence pool based on the previously isolated sequence and used a selection-amplification protocol that allowed the sequence requirements at the 3' terminus of the ribozyme to be interrogated. Comparing the active sequences identified in this experiment revealed the complicated secondary structure of the nucleotide synthase ribozyme. A second selection was then performed to remove nonessential sequence from the ribozyme. This selection started with a pool with variation introduced in both the sequence and the length of the nonconserved loops and joining regions. This pool was generated using a partial reblocking/deblocking strategy on a DNA synthesizer, allowing the combinatorial synthesis of both point deletions and point substitutions. The consensus ribozyme motif that emerged was an approximately 71 nt pseudoknot structure with five stems and two important joining segments. Comparative sequence analysis and a cross-linking experiment point to the probable location of nucleotide synthesis. The prototype isolate from the second selection was nearly 35 times more efficient than the initial isolate and at least 10(8) times more efficient than an upper limit of an as-yet undetectable uncatalyzed reaction, supporting the idea that RNA-catalyzed nucleotide synthesis might have been important in an RNA world.  相似文献   

17.
Natural nucleic acids frequently rely on proteins for stabilization or catalytic activity. In contrast, nucleic acids selected in vitro can catalyze a wide range of reactions even in the absence of proteins. To augment selected nucleic acids with protein functionalities, we have developed a technique for the selection of protein-dependent ribozyme ligases. After randomizing a previously selected ribozyme ligase, L1, we selected variants that required one of two protein cofactors, a tyrosyl transfer RNA (tRNA) synthetase (Cyt18) or hen egg white lysozyme. The resulting nucleoprotein enzymes were activated several thousand fold by their cognate protein effectors, and could specifically recognize the structures of the native proteins. Protein-dependent ribozymes can potentially be adapted to novel assays for detecting target proteins, and the selection method's generality may allow the high-throughput identification of ribozymes capable of recognizing a sizable fraction of a proteome.  相似文献   

18.
The hairpin ribozyme is a small catalytic RNA that has been reengineered resulting in a number of variants with extended or even new functions. Thus, manipulation of the hairpin ribozyme structure has allowed for activity control by external effectors, namely oligonucleotides, flavine mononucleotide, and adenine. Hairpin ribozyme-derived twin ribozymes that mediate RNA fragment exchange reactions as well as self-processing hairpin ribozymes were designed. Furthermore, several hairpin ribozyme variants have been engineered for knock down of specific RNA substrates by adapting the substrate-binding domain to the specific target sequence. This review will focus on hairpin ribozymes possessing structural extensions/variations and thus functionally differing from the parent hairpin ribozyme.  相似文献   

19.
How life emerged from simple non-life chemicals on the ancient Earth is one of the greatest mysteries in biology. The gene expression system of extant life is based on the interdependence between multiple molecular species (DNA, RNA, and proteins). While DNA is mainly used as genetic material and proteins as functional molecules in modern biology, RNA serves as both genetic material and enzymes (ribozymes). Thus, the evolution of life may have begun with the birth of a ribozyme that replicated itself (the RNA world hypothesis), and proteins and DNA joined later. However, the complete self-replication of ribozymes from monomeric substrates has not yet been demonstrated experimentally, due to their limited activity and stability. In contrast, peptides are more chemically stable and are considered to have existed on the ancient Earth, leading to the hypothesis of RNA–peptide co-evolution from the very beginning. Our group and collaborators recently demonstrated that (1) peptides with both hydrophobic and cationic moieties (e.g., KKVVVVVV) form β-amyloid aggregates that adsorb RNA and enhance RNA synthesis by an artificial RNA polymerase ribozyme and (2) a simple peptide with only seven amino acid types (especially rich in valine and lysine) can fold into the ancient β-barrel conserved in various enzymes, including the core of cellular RNA polymerases. These findings, together with recent reports from other groups, suggest that simple prebiotic peptides could have supported the ancient RNA-based replication system, gradually folded into RNA-binding proteins, and eventually evolved into complex proteins like RNA polymerase.  相似文献   

20.
The X-motif is an in vitro-selected ribozyme that catalyzes RNA cleavage by an internal phosphoester transfer reaction. This ribozyme class is distinguished by the fact that it emerged as the dominant clone among at least 12 different classes of ribozymes when in vitro selection was conducted to favor the isolation of high-speed catalysts. We have examined the structural and kinetic properties of the X-motif in order to provide a framework for its application as an RNA-cleaving agent and to explore how this ribozyme catalyzes phosphoester transfer with a predicted rate constant that is similar to those exhibited by the four natural self-cleaving ribozymes. The secondary structure of the X-motif includes four stem elements that form a central unpaired junction. In a bimolecular format, two of these base-paired arms define the substrate specificity of the ribozyme and can be changed to target different RNAs for cleavage. The requirements for nucleotide identity at the cleavage site are GD, where D = G, A, or U and cleavage occurs between the two nucleotides. The ribozyme has an absolute requirement for a divalent cation cofactor and exhibits kinetic behavior that is consistent with the obligate binding of at least two metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号