首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.  相似文献   

2.
The relevance of preserving microorganisms has been well accepted for several decades. Interest is now shifting towards investigating adequate preservation methods to improve microbial survival rates and to preserve new taxa of previously considered unculturable microorganisms. In addition, a growing interest in preserving fragile microbial consortia or communities with biotechnological interest motivates the improvement of preservation methods. In the present study, we reviewed the effect of water availability in microbial diversity shift. We describe the effect of drought on microorganisms at the molecular level and their molecular responses to this life-threatening challenge focusing on the production of xeroprotectants. We also review the interspecies interactions of those drought-tolerant microorganisms with other sensitive organisms including neighbouring prokaryotes and eukaryotes such as plants, and the potential role of these microorganisms at determining the ecological composition of stressed environments. We emphasize the importance of applying the knowledge derived from the molecular mechanisms used by desiccation-tolerant microorganisms for the improvement of the preservation techniques. An overview of the current and newer techniques for preserving microorganisms and microbial communities is provided. The biotechnological interest in preserving pure cultures, microbial consortia and communities is also discussed.  相似文献   

3.

Fungi constitute an invaluable natural resource for scientific research, owing to their diversity; they offer a promising alternative for bioprospecting, thus contributing to biotechnological advances. For a long time, extensive information has been exploited and fungal products have been tested as a source of natural compounds. In this context, enzyme production remains a field of interest, since it offers an efficient alternative to the hazardous processes of chemical transformations. Owing to their vast biodiversity and peculiar biochemical characteristics, two fungal categories, white-rot and anaerobic Neocallimastigomycota, have gathered considerable attention for biotechnological applications. These fungi are known for their ability to depolymerize complex molecular structures and are used in degradation of lignocellulosic biomass, improvement of animal feed digestibility, biogas and bioethanol production, and various other applications. However, there are only limited reports that describe proteolytic enzymes and esterases in these fungi and their synergistic action with lignocellulolytic enzymes on degradation of complex polymers. Thus, in this minireview, we focus on the importance of these organisms in enzyme technology, their bioprospecting, possibility of integration of their enzyme repertoire, and their prospects for future biotechnological innovation.

  相似文献   

4.
A perspective on the biotechnological potential of extremophiles.   总被引:9,自引:0,他引:9  
It is well recognized that many environments considered by man to be extreme are colonized by microorganisms which are specifically adapted to these ecological niches. A diverse range of bacteria, cyanobacteria, algae and yeasts have been isolated from such habitats and it is now widely accepted that these microorganisms provide a valuable resource not only for exploitation in novel biotechnological processes but also as models for investigating how biomolecules are stabilized when subjected to extreme conditions. This short review summarizes our current state of knowledge of this unique group of microorganisms and their enzymes, and attempts to identify their future biotechnological potential.  相似文献   

5.
Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology.  相似文献   

6.
《农业工程》2022,42(6):593-599
Western Ghats are designated as world heritage sites and global biodiversity hotspots. Microbial diversity in this forest area has been largely neglected and is getting attention since the end of the last millennium. In this review, we have studied and organized various microorganisms from Western Ghats and their diversity, important characteristics and potential biotechnological applications. Microorganisms from Western Ghats have been explored individually for potential bioactive molecules. While most of the microorganisms were analyzed for antimicrobial activities, there have been studies on microbial promotion of plant growth. The microbes analyzed included from aquatics, soil, rhizosphere, phyllosphere and even as endophytes. There have been microorganisms which have shown antioxidant and anti-cancerous activities. There are microorganisms capable of degrading plant wastes and also xenobiotics. Microorganisms capable of producing industrially important enzymes have also been reported. The present review explores largely neglected microbial diversity with respect to their ability to produce potential bioactive biomolecules.  相似文献   

7.
Endophytic actinobacteria, which exist in the inner tissues of living plants, have attracted increasing attention among taxonomists, ecologists, agronomists, chemists and evolutionary biologists. Numerous studies have indicated that these prolific actinobacteria appear to have a capacity to produce an impressive array of secondary metabolites exhibiting a wide variety of biological activity, such as antibiotics, antitumor and anti-infection agents, plant growth promoters and enzymes, and may contribute to their host plants by promoting growth and enhancing their ability of withstanding the environmental stresses. These microorganisms may represent an underexplored reservoir of novel species of potential interest in the discovery of novel lead compounds and for exploitation in pharmaceutical, agriculture and industry. This review focuses on new findings in the isolation methods, bio- and chemical diversity of endophytic actinobacteria and reveals the potential biotechnological application. The facing problems and strategies for biodiversity research and bioactive natural products producing are also discussed.  相似文献   

8.
Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations.  相似文献   

9.
Dahms HU  Ying X  Pfeiffer C 《Biofouling》2006,22(5-6):317-327
Cyanobacteria produce a variety of bioactive metabolites that may have allelochemical functions in the natural environment, such as in the prevention of fouling by colonising organisms. Chemical compounds from cyanobacteria are also of biotechnological interest, especially for clinical applications, because of their antibiotic, algicidal, cytotoxic, immunosupressive and enzyme inhibiting activities. Cyanobacterial metabolites have the potential for use in antifouling technology, since they show antibacterial, antialgal, antifungal and antimacrofouling properties which could be expoited in the prevention of biofouling on man-made substrata in the aquatic environment. Molecules with antifouling activity represent a number of types including fatty acids, lipopeptides, amides, alkaloids, terpenoids, lactones, pyrroles and steroids. The isolation of biogenic compounds and the determination of their structure may provide leads for future development of, for example, environmentally friendly antifouling paints. An advantage of exploring the efficacy of cyanobacterial products is that the organisms can be grown in mass culture, which can be manipulated to achieve optimal production of bioactive substances. Phycotoxins and related products from cyanobacteria may serve as materials for antimicro- and antimacrofouling applications. A survey of antibiotic compounds with antifouling potential revealed more than 21 different antifouling substances from 27 strains of cyanobacteria.  相似文献   

10.
Cyanobacteria are considered to be a rich source of novel metabolites of a great importance from a biotechnological and industrial point of view. Some cyanobacterial secondary metabolites (CSMs), exhibit toxic effects on living organisms. A diverse range of these cyanotoxins may have ecological roles as allelochemicals, and could be employed for the commercial development of compounds with applications such as algaecides, herbicides and insecticides. Recently, cyanobacteria have become an attractive source of innovative classes of pharmacologically active compounds showing interesting and exciting biological activities ranging from antibiotics, immunosuppressant, and anticancer, antiviral, antiinflammatory to proteinase-inhibiting agents. A different but not less interesting property of these microorganisms is their capacity of overcoming the toxicity of ultraviolet radiation (UVR) by means of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. These last two compounds are true ‘multipurpose’ secondary metabolites and considered to be natural photoprotectants. In this sense, they may be biotechnologically exploited by the cosmetic industry. Overall CSMs are striking targets in biotechnology and biomedical research, because of their potential applications in agriculture, industry, and especially in pharmaceuticals.  相似文献   

11.
For hundreds of years, mankind has benefited from the natural metabolic processes of microorganisms to obtain basic products such as fermented foods and alcoholic beverages. More recently, microorganisms have been exploited for the production of antibiotics, vitamins and enzymes to be used in medicine and chemical industries. Additionally, several modern drugs, including those for cancer therapy, are natural products or their derivatives. Protists are a still underexplored source of natural products potentially of interest for biotechnological and biomedical applications. This paper focuses on some examples of bioactive molecules from protists and associated bacteria and their possible use in biotechnology.  相似文献   

12.
Abstract

Cyanobacteria produce a variety of bioactive metabolites that may have allelochemical functions in the natural environment, such as in the prevention of fouling by colonising organisms. Chemical compounds from cyanobacteria are also of biotechnological interest, especially for clinical applications, because of their antibiotic, algicidal, cytotoxic, immunosupressive and enzyme inhibiting activities. Cyanobacterial metabolites have the potential for use in antifouling technology, since they show antibacterial, antialgal, antifungal and antimacrofouling properties which could be expoited in the prevention of biofouling on man-made substrata in the aquatic environment. Molecules with antifouling activity represent a number of types including fatty acids, lipopeptides, amides, alkaloids, terpenoids, lactones, pyrroles and steroids. The isolation of biogenic compounds and the determination of their structure may provide leads for future development of, for example, environmentally friendly antifouling paints. An advantage of exploring the efficacy of cyanobacterial products is that the organisms can be grown in mass culture, which can be manipulated to achieve optimal production of bioactive substances. Phycotoxins and related products from cyanobacteria may serve as materials for antimicro- and antimacrofouling applications. A survey of antibiotic compounds with antifouling potential revealed more than 21 different antifouling substances from 27 strains of cyanobacteria.  相似文献   

13.
In the last decade the screening of microalgae, especially the cyanobacteria (blue-green algae), for antibiotics and pharmacologically active compounds has received ever increasing interest. A large number of antibiotic compounds, many with novel structures, have been isolated and characterised. Similarly many cyanobacteria have been shown to produce antiviral and antineoplastic compounds. A range of pharmacological activities have also been observed with extracts of microalgae, however the active principles are as yet unknown in most cases. Several of the bioactive compounds may find application in human or veterinary medicine or in agriculture. Others should find application as research tools or as structural models for the development of new drugs. The microalgae are particularly attractive as natural sources of bioactive molecules since these algae have the potential to produce these compounds in culture which enables the production of structurally complex molecules which are difficult or impossible to produce by chemical synthesis.  相似文献   

14.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

15.
Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest.  相似文献   

16.
Marine bacteria and fungi are of considerable importance as new promising sources of a huge number of biologically active products. Some of these marine species live in a stressful habitat, under cold, lightless and high pressure conditions. Surprisingly, a large number of species with high diversity survive under such conditions and produce fascinating and structurally complex natural products. Up till now, only a small number of microorganisms have been investigated for bioactive metabolites, yet a huge number of active substances with some of them featuring unique structural skeletons have been isolated. This review covers new biologically active natural products published recently (2007–09) and highlights the chemical potential of marine microorganisms, with focus on bioactive products as well as on their mechanisms of action.  相似文献   

17.
Macroalgae are an important source of antimicrobial compounds. However, it is unclear if these compounds are produced by the algae themselves, by their associated bacteria, or by both. The main aim of this study was to investigate the potential of macroalgae and their associated microorganisms to inhibit bacterial quorum sensing (QS) and growth. Before extraction, half of the algal specimens were treated with 30% ethanol to remove surface associated bacteria. Canistrocarpus cervicornis extracts were able to inhibit QS of the reporter Chromobacterium violaceum CV017, where extracts with associated bacteria were more efficient than those without bacteria. However, not all algal extracts that inhibited QS of CV017 were able to inhibit bacterial attachment of Pseudomonas aeruginosas PA01, showing specific activity of algal metabolites. Only 58% of the extracts showed antibacterial activity against eight marine fouling and pathogenic bacterial strains tested. Our data suggests that algae and their associated microbiota are important sources of antimicrobial compounds which potentially can be used in future biotechnological applications.  相似文献   

18.
More than 70 species of halotolerant and halophilic actinomycetes belonging to at least 24 genera have been validly described. Halophilic actinomycetes are a less explored source of actinomycetes for discovery of novel bioactive secondary metabolites. Degradation of aliphatic and aromatic organic compounds, detoxification of pollutants, production of new enzymes and other metabolites such as antibiotics, compatible solutes and polymers are other potential industrial applications of halophilic and halotolerant actinomycetes. Especially new bioactive secondary metabolites that are derived from only a small fraction of the investigated halophilic actinomycetes, mainly from marine habitats, have revealed the huge capacity of this physiological group in production of new bioactive chemical entities. Combined high metabolic capacities of actinomycetes and unique features related to extremophilic nature of the halophilic actinomycetes have conferred on them an influential role for future biotechnological applications.  相似文献   

19.
The biological resources of the oceans have been exploited since ancient human history, mainly by catching fish and harvesting algae. Research on natural products with special emphasis on marine animals and also algae during the last decades of the 20th century has revealed the importance of marine organisms as producers of substances useful for the treatment of human diseases. Though a large number of bioactive substances have been identified, some many years ago, only recently the first drugs from the oceans were approved. Quite astonishingly, the immense diversity of microbes in the marine environments and their almost untouched capacity to produce natural products and therefore the importance of microbes for marine biotechnology was realized on a broad basis by the scientific communities only recently. This has strengthened worldwide research activities dealing with the exploration of marine microorganisms for biotechnological applications, which comprise the production of bioactive compounds for pharmaceutical use, as well as the development of other valuable products, such as enzymes, nutraceuticals and cosmetics. While the focus in these fields was mainly on marine bacteria, also marine fungi now receive growing attention. Although culture-dependent studies continue to provide interesting new chemical structures with biological activities at a high rate and represent highly promising approaches for the search of new drugs, exploration and use of genomic and metagenomic resources are considered to further increase this potential. Many efforts are made for the sustainable exploration of marine microbial resources. Large culture collections specifically of marine bacteria and marine fungi are available. Compound libraries of marine natural products, even of highly purified substances, were established. The expectations into the commercial exploitation of marine microbial resources has given rise to numerous institutions worldwide, basic research facilities as well as companies. In Europe, recent activities have initiated a dynamic development in marine biotechnology, though concentrated efforts on marine natural product research are rare. One of these activities is represented by the Kieler Wirkstoff-Zentrum KiWiZ, which was founded in 2005 in Kiel (Germany).  相似文献   

20.
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号