首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chaplin proteins ChpA-H enable the filamentous bacterium Streptomyces coelicolor to form reproductive aerial structures by assembling into surface-active amyloid-like fibrils. We here demonstrate that chaplins also mediate attachment of S. coelicolor to surfaces. Attachment coincides with the formation of fimbriae, which are connected to the cell surface via spike-shaped protrusions. Mass spectrometry, electron microscopy and Congo red treatment showed that these fimbriae are composed of bundled amyloid fibrils of chaplins. Attachment and fimbriae formation were abolished in a strain in which the chaplin genes chpA–H were inactivated. Instead, very thin fibrils emerged from the spike-shaped protrusions in this mutant. These fibrils were susceptible to cellulase treatment. This enzymatic treatment also released wild-type fimbriae from the cell surface, thereby abolishing attachment. The reduced attachment of a strain in which the gene of a predicted cellulose synthase was inactivated also indicates a role of cellulose in surface attachment. We propose that the mechanism of attachment via cellulose-anchored amyloidal fimbriae is widespread in bacteria and may function in initiation of infection and in formation of biofilms.  相似文献   

2.
The chaplins are a family of eight secreted proteins that are critical for raising aerial hyphae in Streptomyces coelicolor. These eight chaplins can be separated into two main groups: the long chaplins (ChpA to -C) and the short chaplins (ChpD to -H). The short chaplins can be further subdivided on the basis of their abilities to form intramolecular disulfide bonds: ChpD, -F, -G, and -H contain two Cys residues, while ChpE has none. A "minimal chaplin strain" containing only chpC, chpE, and chpH was constructed and was found to raise a substantial aerial mycelium. This strain was used to examine the roles of specific chaplins. Within this strain, the Cys-containing ChpH was identified as the major polymerization unit contributing to aerial hypha formation and assembly of an intricate rodlet ultrastructure on the aerial surfaces, and the two Cys residues were determined to be critical for its function. ChpC augmented aerial hypha formation and rodlet assembly, likely by anchoring the short chaplins to the cell surface, while ChpE was essential for the viability of wild-type S. coelicolor. Interestingly, the lethal effects of a chpE null mutation could be suppressed by the loss of the other chaplins, the inactivation of the twin arginine translocation (Tat) secretion pathway, or the loss of the rodlins.  相似文献   

3.
Streptomycetes form hydrophobic aerial hyphae that eventually septate into hydrophobic spores. Both aerial hyphae and spores possess a typical surface layer called the rodlet layer. We present here evidence that rodlet formation is conserved in the streptomycetes. The formation of the rodlet layer is the result of the interplay between rodlins and chaplins. A strain of Streptomyces coelicolor in which the rodlin genes rdlA and/or rdlB were deleted no longer formed the rodlet layer. Instead, these surfaces were decorated with fine fibrils. Deletion of all eight chaplin genes (strain DeltachpABCDEFGH) resulted in the absence of the rodlet layer as well as the fibrils at surfaces of aerial hyphae and spores. Apart from coating these surfaces, chaplins are involved in the escape of hyphae into the air, as was shown by the strong reduction in the number of aerial hyphae in the DeltachpABCDEFGH strain. The decrease in the number of aerial hyphae correlated with a lower expression of the rdl genes in the colony. Yet, expression per aerial hypha was similar to that in the wild-type strain, indicating that expression of the rdl genes is initiated after the hypha has sensed that it has grown into the air.  相似文献   

4.
Streptomyces coelicolor is a multicellular bacterium whose life cycle encompasses three differentiated states: vegetative hyphae, aerial hyphae and spores. Among the factors required for aerial development are the 'chaplins', a family of eight secreted proteins that coat the surface of aerial hyphae. Three chaplins (the 'long' chaplins, ChpA, B and C) possess an LAXTG-containing C-terminal sorting signal and are predicted sortase substrates. The five remaining 'short' chaplins are presumed to be associated with the cell surface through interactions with the long chaplins. We show here that two sortase enzymes, SrtE1 and SrtE2, cleave LAXTG-containing peptides at two distinct positions in vitro, and are required for cell wall anchoring of ChpC in vivo. srtE1/E2 double mutants are delayed in aerial hyphae formation, do not sporulate and fail to display all short chaplins on their aerial surfaces. Surprisingly, these mutant characteristics were not shared by a long chaplin mutant, which exhibited only modest delays in aerial development, leading us to revise the current model of chaplin-mediated aerial development. The sortase mutant phenotype, instead, appears to stem from an inability to transcribe aerial hyphae-specific genes, whose products have diverse functions. This suggests that sortase activity triggers an important, and previously unknown, developmental checkpoint.  相似文献   

5.
The self-association of proteins into amyloid fibrils offers an alternative to the natively folded state of many polypeptides. Although commonly associated with disease, amyloid fibrils represent the natural functional state of some proteins, such as the chaplins from the soil-dwelling bacterium Streptomyces coelicolor, which coat the aerial mycelium and spores rendering them hydrophobic. We have undertaken a biophysical characterisation of the five short chaplin peptides ChpD-H to probe the mechanism by which these peptides self-assemble in solution to form fibrils. Each of the five chaplin peptides produced synthetically or isolated from the cell wall is individually surface-active and capable of forming fibrils under a range of solution conditions in vitro. These fibrils contain a highly similar cross-β core structure and a secondary structure that resembles fibrils formed in vivo on the spore and mycelium surface. They can also restore the growth of aerial hyphae to a chaplin mutant strain. We show that cysteine residues are not required for fibril formation in vitro and propose a role for the cysteine residues conserved in four of the five short chaplin peptides.  相似文献   

6.
Morphogenesis in the streptomycetes features the differentiation of substrate-associated vegetative hyphae into upwardly growing aerial filaments. This transition requires the activity of bld genes and the secretion of biosurfactants that reduce the surface tension at the colony-air interface enabling the emergence of nascent aerial hyphae. Streptomyces coelicolor produces two classes of surface-active molecules, SapB and the chaplins. While both molecules are important for aerial development, nothing is known about the functional redundancy or interaction of these surfactants apart from the observation that aerial hyphae formation can proceed via one of two pathways: a SapB-dependent pathway when cells are grown on rich medium and a SapB-independent pathway on poorly utilized carbon sources such as mannitol. We used mutant analysis to show that while the chaplins are important, but not required, for development on rich medium, they are essential for differentiation on MS (soy flour mannitol) medium, and the corresponding developmental defects could be suppressed by the presence of SapB. Furthermore, the chaplins are produced by conditional bld mutants during aerial hyphae formation when grown on the permissive medium, MS, suggesting that the previously uncharacterized SapB-independent pathway is chaplin dependent. In contrast, a bld mutant blocked in aerial morphogenesis on all media makes neither SapB nor chaplins. Finally, we show that a constructed null mutant that lacks all chaplin and SapB biosynthetic genes fails to differentiate in any growth condition. We propose that the biosurfactant activities of both SapB and the chaplins are essential for normal aerial hyphae formation on rich medium, while chaplin biosynthesis and secretion alone drives aerial morphogenesis on MS medium.  相似文献   

7.
The chaplin and rodlin proteins together constitute the major components of the hydrophobic sheath that coats the aerial hyphae and spores in Streptomyces, and mutants lacking the chaplins are unable to erect aerial hyphae and differentiate on minimal media. We have gained insight into the developmental regulation of the chaplin (chp) and rodlin (rdl) genes by exploiting a new model species, Streptomyces venezuelae, which sporulates in liquid culture. Using microarrays, the chaplin and rodlin genes were found to be highly induced during submerged sporulation in a bldN-dependent manner. Using σ(BldN) ChIP-chip, we show that this dependence arises because the chaplin and rodlin genes are direct biochemical targets of σ(BldN) . sven3186 (here named rsbN for regulator of sigma BldN), the gene lying immediately downstream of bldN, was also identified as a target of σ(BldN) . Disruption of rsbN causes precocious sporulation and biochemical experiments demonstrate that RsbN functions as a σ(BldN) -specific anti-sigma factor.  相似文献   

8.
The entomopathogenic fungus Beauveria bassiana produces at least three distinct single-cell propagules, aerial conidia, vegetative cells termed blastospores, and submerged conidia, which can be isolated from agar plates, from rich broth liquid cultures, and under nutrient limitation conditions in submerged cultures, respectively. Fluorescently labeled fungal cells were used to quantify the kinetics of adhesion of these cell types to surfaces having various hydrophobic or hydrophilic properties. Aerial conidia adhered poorly to weakly polar surfaces and rapidly to both hydrophobic and hydrophilic surfaces but could be readily washed off the latter surfaces. In contrast, blastospores bound poorly to hydrophobic surfaces, forming small aggregates, bound rapidly to hydrophilic surfaces, and required a longer incubation time to bind to weakly polar surfaces than to hydrophilic surfaces. Submerged conidia displayed the broadest binding specificity, adhering to hydrophobic, weakly polar, and hydrophilic surfaces. The adhesion of the B. bassiana cell types also differed in sensitivity to glycosidase and protease treatments, pH, and addition of various carbohydrate competitors and detergents. The outer cell wall layer of aerial conidia contained sodium dodecyl sulfate-insoluble, trifluoroacetic acid-soluble proteins (presumably hydrophobins) that were not present on either blastospores or submerged conidia. The variations in the cell surface properties leading to the different adhesion qualities of B. bassiana aerial conidia, blastospores, and submerged conidia could lead to rational design decisions for improving the efficacy and possibly the specificity of entomopathogenic fungi for host targets.  相似文献   

9.
The entomopathogenic fungus Beauveria bassiana produces at least three distinct single-cell propagules, aerial conidia, vegetative cells termed blastospores, and submerged conidia, which can be isolated from agar plates, from rich broth liquid cultures, and under nutrient limitation conditions in submerged cultures, respectively. Fluorescently labeled fungal cells were used to quantify the kinetics of adhesion of these cell types to surfaces having various hydrophobic or hydrophilic properties. Aerial conidia adhered poorly to weakly polar surfaces and rapidly to both hydrophobic and hydrophilic surfaces but could be readily washed off the latter surfaces. In contrast, blastospores bound poorly to hydrophobic surfaces, forming small aggregates, bound rapidly to hydrophilic surfaces, and required a longer incubation time to bind to weakly polar surfaces than to hydrophilic surfaces. Submerged conidia displayed the broadest binding specificity, adhering to hydrophobic, weakly polar, and hydrophilic surfaces. The adhesion of the B. bassiana cell types also differed in sensitivity to glycosidase and protease treatments, pH, and addition of various carbohydrate competitors and detergents. The outer cell wall layer of aerial conidia contained sodium dodecyl sulfate-insoluble, trifluoroacetic acid-soluble proteins (presumably hydrophobins) that were not present on either blastospores or submerged conidia. The variations in the cell surface properties leading to the different adhesion qualities of B. bassiana aerial conidia, blastospores, and submerged conidia could lead to rational design decisions for improving the efficacy and possibly the specificity of entomopathogenic fungi for host targets.  相似文献   

10.
The type III secretion system tip complex and translocon   总被引:2,自引:0,他引:2  
The type III secretion machinery of Gram-negative bacteria, also known as the injectisome or needle complex, is composed of a basal body spanning both bacterial membranes and the periplasm, and an external needle protruding from the bacterial surface. A set of three proteins, two hydrophobic and one hydrophilic, are required to allow translocation of proteins from the bacterium to the host cell cytoplasm. These proteins are involved in the formation of a translocation pore, the translocon, in the host cell membrane. Exciting progress has recently been made on the interaction between the translocators and the injectisome needle and the assembly of the translocon in the host cell membrane. As expected, the two hydrophobic translocators insert into the target cell membrane. Unexpectedly, the third, hydrophilic translocator, forms a complex on the distal end of the injectisome needle, the tip complex, and serves as an assembly platform for the two hydrophobic translocators.  相似文献   

11.
Disruption of the SC3 gene in the basidiomycete Schizophyllum commune affected not only formation of aerial hyphae but also attachment to hydrophobic surfaces. However, these processes were not completely abolished, indicating involvement of other molecules. We here show that the SC15 protein mediates formation of aerial hyphae and attachment in the absence of SC3. SC15 is a secreted protein of 191 aa with a hydrophilic N-terminal half and a highly hydrophobic C-terminal half. It is not a hydrophobin as it lacks the eight conserved cysteine residues found in these proteins. Besides being secreted into the medium, SC15 was localized in the cell wall and the mucilage that binds aerial hyphae together. In a strain in which the SC15 gene was deleted (DeltaSC15) formation of aerial hyphae and attachment were not affected. However, these processes were almost completely abolished when the SC15 gene was deleted in the DeltaSC3 background. The absence of aerial hyphae in the DeltaSC3DeltaSC15 strain can be explained by the inability of the strain to lower the water surface tension and to make aerial hyphae hydrophobic.  相似文献   

12.
Mycelial fungi secrete small, cysteine-rich, proteins, called hydrophobins, that self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes, highly insoluble in case of Class I hydrophobins. By self-assembly at the culture medium-air interface they greatly lower the surface tension enabling emergent structures to grow into the air. By self-assembly at the interface between the hydrophilic cell wall and the air or any other hydrophobic environment, these emergent structures are coated with a hydrophobin membrane. These properties allow hydrophobins to fulfil a broad spectrum of functions in fungal development. They are involved in formation of aerial (reproductive) structures, in aerial dispersion of spores, and they line air channels within fruiting bodies with a hydrophobic coating, probably serving gas exchange. Hydrophobins also mediate hyphal attachment to hydrophobic surfaces such as those of plants. Moreover, they appear involved in complex interhyphal interactions, and in interactions with algae in lichens. Their resistance towards chemical and enzymatic treatments suggests that assembled hydrophobins also protect fungal emergent structures against adverse environmental conditions.  相似文献   

13.
H A W?sten  F H Schuren    J G Wessels 《The EMBO journal》1994,13(24):5848-5854
The SC3p hydrophobin of Schizophyllum commune is a small hydrophobic protein (100-101 amino acids with eight cysteine residues) that self-assembles at a water/air interface and coats aerial hyphae with an SDS-insoluble protein membrane, at the outer side highly hydrophobic and with a typical rodlet pattern. SC3p monomers in water also self-assemble at the interfaces between water and oils or hydrophobic solids. These materials are then coated with a 10 nm thick SDS-insoluble assemblage of SC3p making their surfaces hydrophilic. Hyphae of S. commune growing on a Teflon surface became firmly attached and SC3p was shown to be present between the fungal cell wall and the Teflon. Decreased attachment of hyphae to Teflon was observed in strains not expressing SC3, i.e. a strain containing a targeted mutation in this gene and a regulatory mutant thn. These findings indicate that hydrophobins, in addition to forming hydrophobic wall coatings, play a role in adherence of fungal hyphae to hydrophobic surfaces.  相似文献   

14.
Surface Modifications Created by Using Engineered Hydrophobins   总被引:1,自引:0,他引:1       下载免费PDF全文
Hydrophobins are small (ca. 100 amino acids) secreted fungal proteins that are characterized by the presence of eight conserved cysteine residues and by a typical hydropathy pattern. Class I hydrophobins self-assemble at hydrophilic-hydrophobic interfaces into highly insoluble amphipathic membranes, thereby changing the nature of surfaces. Hydrophobic surfaces become hydrophilic, while hydrophilic surfaces become hydrophobic. To see whether surface properties of assembled hydrophobins can be changed, 25 N-terminal residues of the mature SC3 hydrophobin were deleted (TrSC3). In addition, the cell-binding domain of fibronectin (RGD) was fused to the N terminus of mature SC3 (RGD-SC3) and TrSC3 (RGD-TrSC3). Self-assembly and surface activity were not affected by these modifications. However, physiochemical properties at the hydrophilic side of the assembled hydrophobin did change. This was demonstrated by a change in wettability and by enhanced growth of fibroblasts on Teflon-coated with RGD-SC3, TrSC3, or RGD-TrSC3 compared to bare Teflon or Teflon coated with SC3. Thus, engineered hydrophobins can be used to functionalize surfaces.  相似文献   

15.
Hydrophobins are among the most surface active molecules and self-assemble at any hydrophilic-hydrophobic interface into an amphipathic film. These small secreted proteins of about 100 amino acids can be used to make hydrophilic surfaces hydrophobic and hydrophobic surfaces hydrophilic. Although differences in the biophysical properties of hydrophobins have not yet been related to differences in primary structure it has been established that the N-terminal part, at least partly, determines wettability of the hydrophilic side of the assemblage, while the eight conserved cysteine residues that form four disulphide bridges prevent self-assembly of the hydrophobin in the absence of a hydrophilic-hydrophobic interface. Three conformations of class I hydrophobins have been identified: the monomeric state, which is soluble in water, the alpha-helical state, which is the result of self-assembly at a hydrophobic solid, and the beta-sheet state, which is formed during self-assembly at the water-air interface. Experimental evidence strongly indicates that the alpha-helical state is an intermediate and that the beta-sheet state is the end form of assembly. The latter state has a typical ultrastructure of a mosaic of 10 nm wide rodlets, which have been shown to resemble the amyloid fibrils.  相似文献   

16.
We analyzed the total, hydrophobic, and hydrophilic accessible surfaces (ASAs) of residues from a nonredundant bank of 587 3D structure proteins. In an extended fold, residues are classified into three families with respect to their hydrophobicity balance. As expected, residues lose part of their solvent-accessible surface with folding but the three groups remain. The decrease of accessibility is more pronounced for hydrophobic than hydrophilic residues. Amazingly, Lysine is the residue with the largest hydrophobic accessible surface in folded structures. Our analysis points out a clear difference between the mean (other studies) and median (this study) ASA values of hydrophobic residues, which should be taken into consideration for future investigations on a protein-accessible surface, in order to improve predictions requiring ASA values. The different secondary structures correspond to different accessibility of residues. Random coils, turns, and beta-structures (outside beta-sheets) are the most accessible folds, with an average of 30% accessibility. The helical residues are about 20% accessible, and the difference between the hydrophobic and the hydrophilic residues illustrates the amphipathy of many helices. Residues from beta-sheets are the most inaccessible to solvent (10% accessible). Hence, beta-sheets are the most appropriate structures to shield the hydrophobic parts of residues from water. We also show that there is an equal balance between the hydrophobic and the hydrophilic accessible surfaces of the 3D protein surfaces irrespective of the protein size. This results in a patchwork surface of hydrophobic and hydrophilic areas, which could be important for protein interactions and/or activity.  相似文献   

17.
Understanding the mechanism of the bacterial cell adhesion to solid surfaces is of great medical and industrial importance. Bacterial adhesion to inert surfaces, such as a catheter, and other indwelling devices can form biofilm, consequently cause severe morbidity and often fatal infections. Initial bacterial adhesion to the material surfaces is a complicated process that is affected by various physicochemical properties of both bacterial cells and substratum surfaces. The surface properties of the cells were characterized by the sessile drop technique. Moreover, the interfacial free energy of Staphylococcus aureus adhesion to the supporting materials was determined. The results showed that S. aureus examined at different pH levels could be considered hydrophilic. We noted hat the electron-donor character of S. aureus was important at intermediate pH (pH 5, pH 7, and pH 9) and it decreased at both limits acidic and basic conditions. In addition, the adhesion of Staphylococcus aureus ATCC 25923 to the hydrophilic glass and hydrophobic indium tin oxide (ITO)-coated glass surfaces at different pH values (2, 3, 5, 7, 9 and 11) was investigated using atomic force microscopy (AFM) and image analysis was assessed with the Mathlab® program. The data analysis showed that cells (number of adhering cells to glass and ITO-coated glass surface) adhered strongly at acidic pH and weakly at alkaline pH. Also, S. aureus has the ability to attach to both hydrophobic and hydrophilic surfaces, but the adhesion was higher on hydrophobic surface.  相似文献   

18.
The labeling of specific cell surface proteins with biotin was used to examine both protein distribution and delivery of newly synthesized proteins to the apical and basolateral cell surface in A6 cells. Steady-state metabolic labeling with [35S]methionine followed by specific cell surface biotinylation demonstrated polarization of membrane proteins. The delivery of newly synthesized proteins to the apical or basolateral cell surface was examined by metabolic labeling with [35S]methionine using a pulse-chase protocol in combination with specific cell surface biotinylation. Newly synthesized biotinylated proteins at the apical cell surface reached a maximum after a 5 min chase, and then fell over the remainder of a 2 hr chase. The bulk flow of newly synthesized proteins to the basolateral membrane slowly rose to a maximum after 90 min. The detergent Triton X-114 was used to examine delivery of hydrophilic and hydrophobic proteins to the cell surface. Delivery of both hydrophilic and hydrophobic proteins to the apical cell surface reached a maximum 5 to 10 min into the chase period. The arrival of hydrophilic proteins at the basolateral surface showed early delivery and a maximum peak delivery at 120 min into the chase period. In contrast, only an early peak of delivery of newly synthesized hydrophobic proteins to the basolateral membrane was observed.This work was supported by grants from the American Heart Association, the National Kidney Foundation of the Delaware Valley, and from the Department of Veterans Affairs. T.R.K. is a recipient of an Established Investigatorship Award from the American Heart Association.  相似文献   

19.
Hydrophobins are small (ca. 100 amino acids) secreted fungal proteins that are characterized by the presence of eight conserved cysteine residues and by a typical hydropathy pattern. Class I hydrophobins self-assemble at hydrophilic-hydrophobic interfaces into highly insoluble amphipathic membranes, thereby changing the nature of surfaces. Hydrophobic surfaces become hydrophilic, while hydrophilic surfaces become hydrophobic. To see whether surface properties of assembled hydrophobins can be changed, 25 N-terminal residues of the mature SC3 hydrophobin were deleted (TrSC3). In addition, the cell-binding domain of fibronectin (RGD) was fused to the N terminus of mature SC3 (RGD-SC3) and TrSC3 (RGD-TrSC3). Self-assembly and surface activity were not affected by these modifications. However, physiochemical properties at the hydrophilic side of the assembled hydrophobin did change. This was demonstrated by a change in wettability and by enhanced growth of fibroblasts on Teflon-coated with RGD-SC3, TrSC3, or RGD-TrSC3 compared to bare Teflon or Teflon coated with SC3. Thus, engineered hydrophobins can be used to functionalize surfaces.  相似文献   

20.
Cell surface changes that accompany the complex life cycle of Streptomyces coelicolor were monitored by atomic force microscopy (AFM) of living cells. Images were obtained using tapping mode to reveal that young, branching vegetative hyphae have a relatively smooth surface and are attached to an inert silica surface by means of a secreted extracellular matrix. Older hyphae, representing a transition between substrate and aerial growth, are sparsely decorated with fibers. Previously, a well-organized stable mosaic of fibers, called the rodlet layer, coating the surface of spores has been observed using electron microscopy. AFM revealed that aerial hyphae, prior to sporulation, possess a relatively unstable dense heterogeneous fibrous layer. Material from this layer is shed as the hyphae mature, revealing a more tightly organized fibrous mosaic layer typical of spores. The aerial hyphae are also characterized by the absence of the secreted extracellular matrix. The formation of sporulation septa is accompanied by modification to the surface layer, which undergoes localized temporary disruption at the sites of cell division. The characteristics of the hyphal surfaces of mutants show how various chaplin and rodlin proteins contribute to the formation of fibrous layers of differing stabilities. Finally, older spores with a compact rodlet layer develop surface concavities that are attributed to a reduction of intracellular turgor pressure as metabolic activity slows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号