首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The O-antigen polymerase of Gram-negative bacteria has been difficult to characterize. Herein we report the biochemical and functional characterization of the protein product (Wzy) of the gene annotated as the putative O-antigen polymerase, which is located in the O-antigen biosynthetic locus of Francisella tularensis. In silico analysis (homology searching, hydropathy plotting, and codon usage assessment) strongly suggested that Wzy is an O-antigen polymerase whose function is to catalyze the addition of newly synthesized O-antigen repeating units to a glycolipid consisting of lipid A, inner core polysaccharide, and one repeating unit of the O-polysaccharide (O-PS). To characterize the function of the Wzy protein, a non-polar deletion mutant of wzy was generated by allelic replacement, and the banding pattern of O-PS was observed by immunoblot analysis of whole-cell lysates obtained by SDS-PAGE and stained with an O-PS-specific monoclonal antibody. These immunoblot analyses showed that O-PS of the wzy mutant expresses only one repeating unit of O-antigen. Further biochemical characterization of the subcellular fractions of the wzy mutant demonstrated that (as is characteristic of O-antigen polymerase mutants) the low molecular weight O-antigen accumulates in the periplasm of the mutant. Site-directed mutagenesis based on protein homology and topology, which was carried out to locate a catalytic residue of the protein, showed that modification of specific residues (Gly176, Asp177, Gly323, and Tyr324) leads to a loss of O-PS polymerization. Topology models indicate that these amino acids most likely lie in close proximity on the bacterial surface.  相似文献   

2.
Lipopolysaccharides (LPS), particularly the O-antigen component, are one of many virulence determinants necessary for Shigella flexneri pathogenesis. O-antigen biosynthesis is determined mostly by genes located in the rfb region of the chromosome. The rfc/wzy gene encodes the O-antigen polymerase, an integral membrane protein, which polymerizes the O-antigen repeat units of the LPS. The wild-type rfc/wzy gene has no detectable ribosome-binding site (RBS) and four rare codons in the translation initiation region (TIR). Site-directed mutagenesis of the rare codons at positions 4, 9 and 23 to those corresponding to more abundant tRNAs and introduction of a RBS allowed detection of the rfc/wzy gene product via a T7 promoter/polymerase expression assay. Complementation studies using the rfc/wzy constructs allowed visualization of a novel LPS with unregulated O-antigen chain length distribution, and a modal chain length could be restored by supplying the gene for the O-antigen chain length regulator (Rol/Wzz) on a low-copy-number plasmid. This suggests that the O-antigen chain length distribution is determined by both Rfc/Wzy and Rol/Wzz proteins. The effect on translation of mutating the rare codons was determined using an Rfc::PhoA fusion protein as a reporter. Alkaline phosphatase enzyme assays showed an approximately twofold increase in expression when three of the rare codons were mutated. Analysis of the Rfc/Wzy amino acid sequence using TM-PREDICT indicated that Rfc/Wzy had 10–13 transmembrane segments. The computer prediction models were tested by genetically fusing C-terminal deletions of Rfc/Wzy to alkaline phosphatase and β-galactosidase. Rfc::PhoA fusion proteins near the amino-terminal end were detected by Coomassie blue staining and Western blotting using anti-PhoA serum. The enzyme activities of cells with the rfc/wzy fusions and the location of the fusions in rfc/wzy indicated that Rfc/Wzy has 12 transmembrane segments with two large periplasmic domains, and that the amino- and carboxy-termini are located on the cytoplasmic face of the membrane.  相似文献   

3.
The O-antigen of lipopolysaccharide (LPS) is required for virulence in Yersinia enterocolitica serotype O:8. Here we evaluated the importance of controlling the O-antigen biosynthesis using an in vivo rabbit model of infection. Y. enterocolitica O:8 wild-type strain was compared to three mutants differing in the O-antigen phenotype: (i) the rough strain completely devoid of the O-antigen, (ii) the wzy strain that lacks the O-antigen polymerase (Wzy protein) and expresses LPS with only one repeat unit, and (iii) the wzz strain that lacks the O-antigen chain length determinant (Wzz protein) and expresses LPS without modal distribution of O-antigen chain lengths. The most attenuated strain was the wzz mutant. The wzz bacteria were cleared from the tissues by day 30, the blood parameters were least dramatic and histologically only immunomorphological findings were seen. The level of attenuation of the rough and the wzy strain bacteria was between the wild-type and the wzz strain. Wild-type bacteria were highly resistant to killing by polymorphonuclear leukocytes, the wzz strain bacteria were most sensitive and the rough and wzy strain bacteria were intermediate resistant. These results clearly demonstrated that the presence of O-antigen on the bacterial surface is not alone sufficient for full virulence, but also there is a requirement for its controlled chain length.  相似文献   

4.
The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.  相似文献   

5.
We have previously shown that the TolA protein is required for the correct surface expression of the Escherichia coli O7 antigen lipopolysaccharide (LPS). In this work, delta tolA and delta pal mutants of E. coli K-12 W3110 were transformed with pMF19 (encoding a rhamnosyltransferase that reconstitutes the expression of O16-specific LPS), pWQ5 (encoding the Klebsiella pneumoniae O1 LPS gene cluster), or pWQ802 (encoding the genes necessary for the synthesis of Salmonella enterica O:54). Both DeltatolA and delta pal mutants exhibited reduced surface expression of O16 LPS as compared to parental W3110, but no significant differences were observed in the expression of K. pneumoniae O1 LPS and S. enterica O:54 LPS. Therefore, TolA and Pal are required for the correct surface expression of O antigens that are assembled in a wzy (polymerase)-dependent manner (like those of E. coli O7 and O16) but not for O antigens assembled by wzy-independent pathways (like K. pneumoniae O1 and S. enterica O:54). Furthermore, we show that the reduced surface expression of O16 LPS in delta tolA and delta pal mutants was associated with a partial defect in O-antigen polymerization and it was corrected by complementation with intact tolA and pal genes, respectively. Using derivatives of W3110 delta tolA and W3110 delta pal containing lacZ reporter fusions to fkpA and degP, we also demonstrate that the RpoE-mediated extracytoplasmic stress response is upregulated in these mutants. Moreover, an altered O16 polymerization was also detected under conditions that stimulate RpoE-mediated extracytoplasmic stress responses in tol+ and pal+ genetic backgrounds. A Wzy derivative with an epitope tag at the C-terminal end of the protein was stable in all the mutants, ruling out stress-mediated proteolysis of Wzy. We conclude that the absence of TolA and Pal elicits a sustained extracytoplasmic stress response that in turn reduces O-antigen polymerization but does not affect the stability of the Wzy O-antigen polymerase.  相似文献   

6.
The structures and biosynthesis of lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, have been studied extensively in cultured bacteria such as Escherichia coli. In contrast, little is known about the structures and biosynthesis of the LPS of unculturable bacteria, including insect symbionts, many of which are Gram-negative bacteria. A brown-winged green bug, Plautia stali, is known to harbor a single species of gamma-proteobacterium in the posterior mid-gut caeca. To characterize the features of its LPS, we analyzed the genome sequence of the symbiont, and identified the putative genes involved in LPS synthesis. Genes involved in the synthesis of lipid A and the core oligosaccharide were found in the genome, but waaL, which encodes the O-antigen ligase, was not. Furthermore, we characterized the LPS of this symbiont using SDS-polyacrylamide gel electrophoresis (SDS–PAGE) and Toll-like receptor 4 (TLR4) stimulation assays. Consistent with the genomic analysis, the SDS–PAGE analysis suggested that the symbiont had rough-type LPS, which lacked the O-antigen. The TLR4 stimulation assay demonstrated that LPS purified from the symbionts activated NF-κB-dependent reporter expression, indicating the existence of a bioactive lipid A portion in the LPS. These results suggest that the P. stali symbiont produces rough-type LPS.  相似文献   

7.
Lipopolysaccharide (LPS), a surface polymer of Gram-negative bacteria, helps bacteria survive in different environments and acts as a virulence determinant of host infection. The O-antigen (Oag) component of LPS exhibits a modal chain-length distribution that is controlled by polysaccharide co-polymerases (PCPs). The molecular basis of the regulation of Oag chain-lengths remains unclear, despite extensive mutagenesis and structural studies of PCPs from Escherichia coli and Shigella. Here, we identified a single mutation (A107P) of the Shigella flexneri WzzBSF, by a random mutagenesis approach, that causes a shortened Oag chain-length distribution in bacteria. We determined the crystal structures of the periplasmic domains of wild-type WzzBSF and the A107P mutant. Both structures form a highly similar open trimeric assembly in the crystals, and show a similar tendency to self-associate in solution. Binding studies by bio-layer interferometry reveal cooperative binding of very short (VS)-core-plus-O-antigen polysaccharide (COPS) to the periplasmic domains of both proteins, but with decreased affinity for the A107P mutant. Our studies reveal that subtle and localized structural differences in PCPs can have dramatic effects on LPS chain-length distribution in bacteria, for example by altering the affinity for the substrate, which supports the role of the structure of the growing Oag polymer in this process.  相似文献   

8.
A DNA locus from Bordetella pertussis capable of reconstituting lipopolysaccharide (LPS) O-antigen biosynthesis in Salmonella typhimurium SL3789 (rfaF511) has been isolated, by using selection with the antibiotic novobiocin. DNA within the locus encodes a protein with amino acid sequence similarity to heptosyltransferase II, encoded by waaF (previously rfaF) in other gram-negative bacteria. Mutation of this gene in B. pertussis, Bordetella parapertussis, and Bordetella bronchiseptica by allelic exchange generated bacteria with deep rough LPS phenotypes consistent with the proposed function of the gene as an inner core heptosyltransferase. These are the first LPS mutants generated in B. parapertussis and B. bronchiseptica and the first deep rough mutants of any of the bordetellae.  相似文献   

9.
The asymmetric outer membrane of Gram-negative bacteria is formed of the inner leaflet with phospholipids and the outer leaflet with lipopolysaccharides (LPS). Outer membrane protein F (OmpF) is a trimeric porin responsible for the passive transport of small molecules across the outer membrane of Escherichia coli. Here, we report the impact of different levels of heterogeneity in LPS environments on the structure and dynamics of OmpF using all-atom molecular dynamics simulations. The simulations provide insight into the flexibility and dynamics of LPS components that are highly dependent on local environments, with lipid A being the most rigid and O-antigen being the most flexible. Increased flexibility of O-antigen polysaccharides is observed in heterogeneous LPS systems, where the adjacent O-antigen repeating units are weakly interacting and thus more dynamic, compared to homogeneous LPS systems in which LPS interacts strongly with each other with limited overall flexibility due to dense packing. The model systems were validated by comparing molecular-level details of interactions between OmpF surface residues and LPS core sugars with experimental data, establishing the importance of LPS core oligosaccharides in shielding OmpF surface epitopes recognized by monoclonal antibodies. There are LPS environmental influences on the movement of bulk ions (K+ and Cl), but the ion selectivity of OmpF is mainly affected by bulk ion concentration.  相似文献   

10.
Helicobacter pylori persistently colonizes the gastric mucosa of half the human population. It is one of the most genetically diverse bacterial organisms and subvariants are continuously emerging within an H. pylori population. In this study we characterized a number of single-colony isolates from H. pylori communities in various environmental settings, namely persistent human gastric infection, in vitro bacterial subcultures on agar medium, and experimental in vivo infection in mice. The lipopolysaccharide (LPS) O-antigen chain revealed considerable phenotypic diversity between individual cells in the studied bacterial communities, as demonstrated by size variable O-antigen chains and different levels of Lewis glycosylation. Absence of high-molecular-weight O-antigen chains was notable in a number of experimentally passaged isolates in vitro and in vivo. This phenotype was not evident in bacteria obtained from a human gastric biopsy, where all cells expressed high-molecular-weight O-antigen chains, which thus may be the preferred phenotype for H. pylori colonizing human gastric mucosa. Genotypic variability was monitored in the two genes encoding α1,3-fucosyltransferases, futA and futB, that are involved in Lewis antigen expression. Genetic modifications that could be attributable to recombination events within and between the two genes were commonly detected and created a diversity, which together with phase variation, contributed to divergent LPS expression. Our data suggest that the surrounding environment imposes a selective pressure on H. pylori to express certain LPS phenotypes. Thus, the milieu in a host will select for bacterial variants with particular characteristics that facilitate adaptation and survival in the gastric mucosa of that individual, and will shape the bacterial community structure.  相似文献   

11.
Cloning of the rfb genes of Shigella flexneri 2a into Escherichia coli K-12 strain DH1 results in the synthesis of lipopolysaccharides (LPS) with an O-antigen chain having type antigen IV and group antigens 3,4. During genetic studies of these rfb genes in E. coli K-12, we observed that strains harbouring plasmids with certain mutations (inversion and transposon insertions) which should have blocked O-antigen synthesis nevertheless still produced LPS with O-antigen chains. These LPS migrated differently on silver-stained SDS—polyacrylamide gels, compared with the LPS produced by wild-type rfb genes, and the group 3,4 antigens were barely detectable, suggesting that the O-antigen was altered. Investigation of the genetic determinants for production of the altered O-antigen/LPS indicated that: (i) these LPS are produced as a result of mutations which are either polar on rfbF or inactivate rfbF; (ii) the rfbX gene product (or a similar protein in the E. coli K-12 rfb region) is needed for production of the altered O-antigen in the form of LPS; (iii) the rfbG gene product is required for the production of both the parental and altered LPS; (iv) the dTDP-rhamnose biosynthesis genes are required. Additionally, an E. coli K-12 gene product(s) encoded outside the rfb region also contributes to production of the O-antigen of the altered LPS. An antiserum raised to the altered LPS from strain DH1(pPM2217 (rfbX::Tn1725)) was found to cross-react with nearly all S. flexneri serotypes, and with the altered LPS produced by other DH1 strains harbouring plasmids with different rfb mutations, as described above. The reactivity of the altered LPS with a panel of monoclonal antibodies specific for various S. flexneri O-antigen type and group antigens demonstrated that their O-antigen components were closely related to that of S. flexneri serotype 4. The RfbF and RfbG proteins were shown to have similarity to rhamnose transferases, and we identified a motif common to the N-termini of 6-deoxy-hexose nucleotide sugar transferases. We propose that the E. coli K-12 strains harbouring the mutated S. flexneri rfb genes produce LPS with a hybrid O-antigen as a consequence of inactivation of RfbF and complementation by an E. coli K-12 gene product. Analysis of the genetic and immunochemical data suggested a possible structure for the O-antigen component of the altered LPS.  相似文献   

12.
Initial attachment of bacteriophage P22 to the Salmonella host cell is known to be mediated by interactions between lipopolysaccharide (LPS) and the phage tailspike proteins (TSP), but the events that subsequently lead to DNA injection into the bacterium are unknown. We used the binding of a fluorescent dye and DNA accessibility to DNase and restriction enzymes to analyze DNA ejection from phage particles in vitro. Ejection was specifically triggered by aggregates of purified Salmonella LPS but not by LPS with different O-antigen structure, by lipid A, phospholipids, or soluble O-antigen polysaccharide. This suggests that P22 does not use a secondary receptor at the bacterial outer membrane surface. Using phage particles reconstituted with purified mutant TSP in vitro, we found that the endorhamnosidase activity of TSP degrading the O-antigen polysaccharide was required prior to DNA ejection in vitro and DNA replication in vivo. If, however, LPS was pre-digested with soluble TSP, it was no longer able to trigger DNA ejection, even though it still contained five O-antigen oligosaccharide repeats. Together with known data on the structure of LPS and phage P22, our results suggest a molecular model. In this model, tailspikes position the phage particles on the outer membrane surface for DNA ejection. They force gp26, the central needle and plug protein of the phage tail machine, through the core oligosaccharide layer and into the hydrophobic portion of the outer membrane, leading to refolding of the gp26 lazo-domain, release of the plug, and ejection of DNA and pilot proteins.  相似文献   

13.
Nisin is a lanthionine antimicrobial effective against diverse Gram-positive bacteria and is used as a food preservative worldwide. Its action is mediated by pyrophosphate recognition of the bacterial cell wall receptors lipid II and undecaprenyl pyrophosphate. Nisin/receptor complexes disrupt cytoplasmic membranes, inhibit cell wall synthesis and dysregulate bacterial cell division. Gram-negative bacteria are much more tolerant to antimicrobials including nisin. In contrast to Gram-positives, Gram-negative bacteria possess an outer membrane, the major constituent of which is lipopolysaccharide (LPS). This contains surface exposed phosphate and pyrophosphate groups and hence can be targeted by nisin. Here we describe the impact of LPS on membrane stability in response to nisin and the molecular interactions occurring between nisin and membrane-embedded LPS from different Gram-negative bacteria. Dye release from liposomes shows enhanced susceptibility to nisin in the presence of LPS, particularly rough LPS chemotypes that lack an O-antigen whereas LPS from microorganisms sharing similar ecological niches with antimicrobial producers provides only modest enhancement. Increased susceptibility was observed with LPS from pathogenic Klebsiella pneumoniae compared to LPS from enteropathogenic Salmonella enterica and gut commensal Escherichia coli. LPS from Brucella melitensis, an intra-cellular pathogen which is adapted to invade professional and non-professional phagocytes, appears to be refractory to nisin. Molecular complex formation between nisin and LPS was studied by solid state MAS NMR and revealed complex formation between nisin and LPS from most organisms investigated except B. melitensis. LPS/nisin complex formation was confirmed in outer membrane extracts from E. coli.  相似文献   

14.
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.  相似文献   

15.
Shigella flexneri utilises the Wzy-dependent pathway for the production of a plethora of complex polysaccharides, including the lipopolysaccharide O-antigen (Oag) component. The inner membrane protein WzySF polymerises Oag repeat units, whilst two co-polymerase proteins, WzzSF and WzzpHS-2, together interact with WzySF to regulate production of short- (S-Oag) and very long- (VL-Oag) Oag modal lengths, respectively. The 2D arrangement of WzySF transmembrane and soluble regions has been previously deciphered, however, attaining information on the 3D structural and conformational arrangement of WzySF, or any homologue, has proven difficult. For the first time, the current study detected insights into the in situ WzySF arrangement. In vitro assays using thiol-reactive PEG-maleimide were used to probe WzySF conformation, which additionally detected novel, unique conformational changes in response to interaction with intrinsic factors, including WzzSF and WzzpHS-2, and extrinsic factors, such as temperature. Site-directed mutagenesis of WzySF cysteine residues revealed the presence of a putative intramolecular disulphide bond, between cysteine moieties 13 and 60. Subsequent analyses highlighted both the structural and functional importance of WzySF cysteines. Substitution of WzySF cysteine residues significantly decreased biosynthesis of the VL-Oag modal length, without disruption to S-Oag production. This phenotype was corroborated in the absence of co-polymerase competition for WzySF interaction. These data suggest WzySF cysteine substitutions directly impair the interaction between Wzy/WzzpHS-2, without altering the Wzy/WzzSF interplay, and in combination with structural data, we propose that the N- and C-termini of WzySF are arranged in close proximity, and together may form the unique WzzpHS-2 interaction site.  相似文献   

16.
Lipopolysaccharide endotoxins (LPS) are the most common pyrogenic substances in recombinant peptides and proteins purified from Gram-negative bacteria, such as Escherichia coli. In this respect, aqueous two-phase micellar systems (ATPMS) have already proven to be a good strategy to purify recombinant proteins of pharmaceutical interest and remove high LPS concentrations. In this paper, we review our recent experimental work in protein partitioning in Triton X-114 ATPMS altogether with some new results and show that LPS–protein aggregation can influence both protein and LPS partitioning. Green fluorescent protein (GFPuv) was employed as a model protein. The ATPMS technology proved to be effective for high loads of LPS removal into the micelle-rich phase (%REMLPS?>?98 %) while GFPuv partitioned preferentially to the micelle-poor phase (K GFPuv?<?1.00) due to the excluded-volume interactions. However, theoretically predicted protein partition coefficient values were compared with experimentally obtained ones, and good agreement was found only in the absence of LPS. Dynamic light scattering measurements showed that protein–LPS interactions were taking place and influenced the partitioning process. We believe that this phenomenon should be considered in LPS removal employing any kind of aqueous two-phase system. Nonetheless, ATPMS can still be considered as an efficient strategy for high loads of LPS removal, but being aware that the excluded-volume partitioning theory available might overestimate partition coefficient values due to the presence of protein–LPS aggregation.  相似文献   

17.
In Shigella flexneri, the polysaccharide copolymerase (PCP) protein WzzSF confers a modal length of 10 to 17 repeat units (RUs) to the O-antigen (Oag) component of lipopolysaccharide (LPS). PCPs form oligomeric structures believed to be related to their function. To identify functionally important regions within WzzSF, random in-frame linker mutagenesis was used to create mutants with 5-amino-acid insertions (termed Wzzi proteins), and DNA sequencing was used to locate the insertions. Analysis of the resulting LPS conferred by Wzzi proteins identified five mutant classes. The class I mutants were inactive, resulting in nonregulated LPS Oag chains, while classes II and III conferred shorter LPS Oag chains of 2 to 10 and 8 to 14 RUs, respectively. Class IV mutants retained near-wild-type function, and class V mutants increased the LPS Oag chain length to 16 to 25 RUs. In vivo formaldehyde cross-linking indicated class V mutants readily formed high-molecular-mass oligomers; however, class II and III Wzzi mutants were not effectively cross-linked. Wzz dimer stability was also investigated by heating cross-linked oligomers at 100°C in the presence of SDS. Unlike the WzzSF wild type and class IV and V Wzzi mutants, the class II and III mutant dimers were not detectable. The location of each insertion was mapped onto available PCP three-dimensional (3D) structures, revealing that class V mutations were most likely located within the inner cavity of the PCP oligomer. These data suggest that the ability to produce stable dimers may be important in determining Oag modal chain length.Lipopolysaccharide (LPS) of Shigella flexneri is an important virulence factor, providing protection against host defenses and affecting interaction with host cells. LPS is composed of three regions: the hydrophobic lipid A membrane anchor, the core sugar region, and the O-antigen (Oag) polysaccharide chain (18). The basic Oag repeat unit of S. flexneri is a tetrasaccharide consisting of three rhamnose sugars and one N-acetylglucosamine sugar (19). The contribution of Shigella Oag to establishing virulence has been extensively investigated, and results indicate that regulated Oag modal length is required for virulence (8, 23, 25). Loss of Oag modal chain length regulation affects virulence due to the masking of the outer membrane (OM) protein IcsA (8, 23), and the type III secretion system is also affected by Oag chain length (24).The current model for Oag biogenesis in S. flexneri involves the initiation of Oag repeat unit synthesis on the cytoplasmic face of the inner membrane (IM) and continues with a series of successive sugar transferase reactions. The repeat units are assembled on the lipid carrier undecaprenol phosphate (Und-P), and transported across the IM by the Wzx flippase to the periplasmic face of the IM. Polymerization of Oag repeat units is catalyzed by the Wzy polymerase, linking the individual oligosaccharide repeat units into a chain; the nascent chain is transferred from its lipid carrier to the nonreducing end of the newly flipped oligosaccharide repeat unit. The resulting chain is then ligated to the lipid A core by WaaL ligase (18, 26) to form LPS.The regulation of the chain length of the Oag polysaccharide is controlled by the Wzz protein, a member of the polysaccharide copolymerase 1a (PCP1a) family (13, 21). S. flexneri Wzz (WzzSF) confers an average chain modal length of 10 to 17 Oag repeat units. In addition to determining the Oag chain modal length, PCP proteins are involved in enterobacterial common antigen (ECA) modal chain length regulation and biosynthesis and in capsule polysaccharide (CPS) and exopolysaccharide (EPS) biosynthesis (13). The PCP1a proteins are located in the IM and have two transmembrane (TM) regions, TM1 and TM2 (14). TM1 is located close to the N-terminal end, and TM2 is located near the C-terminal end, while the hydrophilic region between TM regions is located in the periplasm (14). PCPs exhibit a conserved motif, proximal to and partly overlapping the TM2 region, rich in proline and glycine residues (2, 3, 13). Site-directed mutagenesis studies targeting a number of these conserved residues, singularly or in combination, indicate that changes to this region have a significant effect on the resulting Oag modal chain length (4). Many mutagenesis studies on residues throughout Wzz indicate that function may be an overall property of the protein and may not be limited to one particular region (4, 6, 21). Despite studies conducted to probe the Wzz structure function relationship, little is known about the mode of action in determining Oag modal chain length. Recently, the periplasmic domain structures of a collection of PCP proteins including Salmonella enterica serovar Typhimurium WzzB (WzzST) and Escherichia coli O157 FepE and WzzE have been solved, and it has been deduced that these structures show marked similarities at the protomer and oligomer levels (21). These protomers are elongated and consist of two structural components: a trapezoidal α/β base domain close to the membrane and an extended α-helical hairpin containing an ∼100-Å-long helix forming anti-parallel coiled-coil interactions with two helices that fold back toward the membrane (21). The protomers self-assemble into bell-shaped oligomers displaying comparable structural features, with WzzST forming pentameric oligomers, WzzE assembling into octameric oligomers, and FepE assembling into nonameric structures (21). In contrast, a recent study from Larue et al. reports that WzzST, FepE, and WzzK40 favor hexameric structures (9). A previous study on the oligomeric status of S. flexneri WzzB (WzzSF) via in vivo cross-linking with formaldehyde indicated that WzzSF has the ability to form hexamers and high-order oligomers, suggesting that oligomerization is important in function (4). Related to this, Marolda et al. have shown that the ECA-associated Wzx can fully complement an LPS Oag-associated Wzx-deficient mutant if the remaining ECA gene cluster is deleted, providing genetic evidence that proteins involved in Oag/ECA biosynthesis and processing may function as a complex (11).Several models of the likely mechanisms of Oag chain regulation have been proposed. Bastin et al. initially suggested that Wzz acts as a molecular timer, allowing polymerization to occur to a particular point, hence increasing the number of repeat units added to the chain (1). An alternative model proposed by Morona et al. suggested that Wzz acts as a molecular chaperone, facilitating the interaction between Wzy and WaaL, and modal length is the result of the ratio of Wzy and WaaL (14). Published data indicated that the ratio of Wzy and Wzz was important in determining Oag modal chain length, which is supportive of the latter model (5). With recent developments in solving the PCP three-dimensional (3D) structure and oligomeric arrangement, a new model has been proposed by Tocilj et al. in which the Wzz oligomers act as molecular scaffolds for multiple Wzy polymerase molecules and the growing Oag chain is transferred from one Wzy to another Wzy molecule (21).In a previous study, site-directed mutagenesis analysis was conducted on WzzSF (4). Although mutational alterations targeting the TM regions caused dramatic changes in the resulting LPS Oag chain length, mutations targeting the periplasmic domain generally did not have an obvious effect on the resulting LPS Oag chain length. This was also shown for mutations in FepE (17). Hence, we decided that a more severe approach to WzzSF mutagenesis was needed to investigate the relationship between Wzz structure and function by increasing the likelihood of acquiring Wzz mutants displaying phenotypic changes. In this study, we have investigated the structure and function of WzzSF by constructing a library of in-frame linker mutants with 5-amino-acid (aa) insertions throughout the WzzSF protein. We have identified regions in WzzSF which alter the modal length in different ways and present biochemical evidence acquired by in vivo chemical cross-linking that indicates oligomeric differences exist between Wzz mutants and the wild type (WT). We also present evidence that suggests the dimeric form of WzzSF is important in establishing modal length.  相似文献   

18.
Genetic evidence suggests that a family of bacterial and eukaryotic integral membrane proteins (referred to as Wzx and Rft1, respectively) mediates the transbilayer movement of isoprenoid lipid-linked glycans. Recent work in our laboratory has shown that Wzx proteins involved in O-antigen lipopolysaccharide (LPS) assembly have relaxed specificity for the carbohydrate structure of the O-antigen subunit. Furthermore, the proximal sugar bound to the isoprenoid lipid carrier, undecaprenyl-phosphate (Und-P), is the minimal structure required for translocation. In Escherichia coli K-12, N-acetylglucosamine (GlcNAc) is the proximal sugar of the O16 and enterobacterial common antigen (ECA) subunits. Both O16 and ECA systems have their respective translocases, WzxO16 and WzxE, and also corresponding polymerases (WzyO16 and WzyE) and O-antigen chain-length regulators (WzzO16 and WzzE), respectively. In this study, we show that the E. coli wzxE gene can fully complement a wzxO16 translocase deletion mutant only if the majority of the ECA gene cluster is deleted. In addition, we demonstrate that introduction of plasmids expressing either the WzyE polymerase or the WzzE chain-length regulator proteins drastically reduces the O16 LPS-complementing activity of WzxE. We also show that this property is not unique to WzxE, since WzxO16 and WzxO7 can cross-complement translocase defects in the O16 and O7 antigen clusters only in the absence of their corresponding Wzz and Wzy proteins. These genetic data are consistent with the notion that the translocation of O-antigen and ECA subunits across the plasma membrane and the subsequent assembly of periplasmic O-antigen and ECA Und-PP-linked polymers depend on interactions among Wzx, Wzz, and Wzy, which presumably form a multiprotein complex.  相似文献   

19.
Plesiomonas shigelloides is a Gram-negative opportunistic pathogen associated with gastrointestinal and extraintestinal infections, which especially invades immunocompromised patients and neonates. The lipopolysaccharides are one of the major virulence determinants in Gram-negative bacteria and are structurally composed of three different domains: the lipid A, the core oligosaccharide and the O-antigen polysaccharide.In the last few years we elucidated the structures of the O-chain and the core oligosaccharide from the P. shigelloides strain 302-73. In this paper we now report the characterization of the linkage between the core and the O-chain. The LPS obtained after PCP extraction contained a small number of O-chain repeating units. The product obtained by hydrazinolysis was analysed by FTICR-ESIMS and suggested the presence of an additional Kdo in the core oligosaccharide. Furthermore, the LPS was hydrolysed under mild acid conditions and a fraction that contained one O-chain repeating unit linked to a Kdo residue was isolated and characterized by FTICR-ESIMS and NMR spectroscopy. Moreover, after an alkaline reductive hydrolysis, a disaccharide α-Kdo-(2→6)-GlcNol was isolated and characterized. The data obtained proved the presence of an α-Kdo in the outer core and allowed the identification of the O-antigen biological repeating unit as well as its linkage with the core oligosaccharide.  相似文献   

20.
Escherichia coli O86:B7 has long been used as a model bacterial strain to study the generation of natural blood group antibody in humans, and it has been shown to possess high human blood B activity. The O-antigen structure of O86:B7 was solved recently in our laboratory. Comparison with the published structure of O86:H2 showed that both O86 subtypes shared the same O unit, yet each of the O antigens is polymerized from a different terminal sugar in a different glycosidic linkage. To determine the genetic basis for the O-antigen differences between the two O86 strains, we report the complete sequence of O86:B7 O-antigen gene cluster between galF and hisI, each gene was identified based on homology to other genes in the GenBank databases. Comparison of the two O86 O-antigen gene clusters revealed that the encoding regions between galF and gnd are identical, including wzy genes. However, deletion of the two wzy genes revealed that wzy in O86:B7 is responsible for the polymerization of the O antigen, while the deletion of wzy in O86:H2 has no effect on O-antigen biosynthesis. Therefore, we proposed that there must be another functional wzy gene outside the O86:H2 O-antigen gene cluster. Wzz proteins determine the degree of polymerization of the O antigen. When separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the lipopolysaccharide (LPS) of O86:B7 exhibited a modal distribution of LPS bands with relatively short O units attached to lipid A-core, which differs from the LPS pattern of O86:H2. We proved that the wzz genes are responsible for the different LPS patterns found in the two O86 subtypes, and we also showed that the very short type of LPS is responsible for the serum sensitivity of the O86:B7 strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号