首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细菌成孔毒素研究进展   总被引:2,自引:0,他引:2  
贺政新  郑玉玲  姜永强 《生物磁学》2009,(15):2941-2943
成孔毒素是多种致病性细菌分泌的一种重要毒力因子,通过在真核细胞膜上形成孔道结构,引起细胞裂解。基于毒素产生孔径的大小和与细胞作用方式的不同,可将其分为大成孔毒素、小成孔毒素和RTX毒素。成孔毒素主要通过改变细胞膜的通透性发挥毒性效应,导致细胞死亡,然而失去细胞通透性屏障的早期后果通常是细胞因子的释放,细胞内蛋白激酶的激活,有时会诱导细胞凋亡。  相似文献   

2.
Most β pore-forming toxins need to be oligomerized via receptors in order to form membrane pores. Though oligomerizing toxins frequently form SDS-resistant oligomers, it was questionable whether SDS-resistant oligomers reflected native functional toxin complexes. In order to elucidate the essence of the cytocidal assemblages, oligomers of aerolysin-like toxins, aerolysin, parasporin-2 and epsilon toxin, were examined with or without SDS. On Blue Native PAGE, each toxin, which had been solubilized from target cells with mild detergent, was a much larger complex (nearly 1 MDa) than the typical SDS-resistant oligomers (~200 kDa). Size exclusion chromatography confirmed the huge toxin complexes. While a portion of the huge complexes were sensitive to proteases, SDS-resistant oligomers resist the proteolysis. Presumably the core toxin complexes remained intact while the cellular proteins were degraded. Moreover, intermediate complexes, which included no SDS-resistant oligomers, could be detected at lower temperatures. This study provides evidence for huge functional complexes of β pore-forming toxins and emphasizes their potential variance in composition.  相似文献   

3.
Recent studies demonstrated that a variety of bacterial pore-forming toxins induce cell death through a process of programmed necrosis characterized by the rapid depletion of cellular ATP. However, events leading to the necrosis and depletion of ATP are not thoroughly understood. We demonstrate that ATP-depletion induced by two pore-forming toxins, the Clostridium perfringens epsilon-toxin and the Aeromonas hydrophila aerolysin toxin, is associated with decreased mitochondrial membrane potential and opening of the mitochondrial permeability transition pore. To gain further insight into the toxin-induced metabolic changes contributing to necrosis and depletion of ATP, we analyzed the biochemical profiles of 251 distinct compounds by GC/MS or LC/MS/MS following exposure of a human kidney cell line to the epsilon-toxin. As expected, numerous biochemicals were seen to increase or decrease in response to epsilon-toxin. However, the pattern of these changes was consistent with the toxin-induced disruption of major energy-producing pathways in the cell including disruptions to the beta-oxidation of lipids. In particular, treatment with epsilon-toxin led to decreased levels of key coenzymes required for energy production including carnitine, NAD (and NADH), and coenzyme A. Independent biochemical assays confirmed that epsilon-toxin and aerolysin induced the rapid decrease of these coenzymes or their synthetic precursors. Incubation of cells with NADH or carnitine-enriched medium helped protect cells from toxin-induced ATP depletion and cell death. Collectively, these results demonstrate that members of the aerolysin family of pore-forming toxins lead to decreased levels of essential coenzymes required for energy production. The resulting loss of energy substrates is expected to contribute to dissipation of the mitochondrial membrane potential, opening of the mitochondrial permeability transition pore, and ultimately cell death.  相似文献   

4.
5.
Pore-forming cytolysins of Gram-negative bacteria   总被引:75,自引:16,他引:75  
A great deal is known about the structure, function and metabolic effects of enzymatic bacterial toxins such as the diphtheria, pertussis and cholera toxins. By comparison, our understanding of the pore-forming, cytolytic toxins, particularly those produced by Gram-negative bacterial pathogens, is far less complete. The genetics and biochemistry of a large, newly discovered family of calcium-dependent, pore-forming cytotoxins (RTX toxins) produced by different genera of the Enterobacteriaceae and Pasteurellaceae are discussed in this review. This toxin family is especially noteworthy because the individual toxins often exhibit different cell- and host-specificity. A brief review is also included of two ancestrally unrelated groups of calcium-independent, pore-forming toxins, the haemolysins produced by Proteus mirabilis and Serratia marcescens and the aerolysins secreted by species of Aeromonas. Their structure and function are contrasted with those of the RTX family members. Emerging questions about the role of cytolysins in pathogenesis are presented. Perhaps the most important issue raised is whether or not less attention should be paid to the lytic capacity of these cytotoxins, with more energy being devoted to the understanding of their non-lytic inhibitory activities against host cells.  相似文献   

6.
Cnidaria are venomous animals that produce diverse protein and polypeptide toxins, stored and delivered into the prey through the stinging cells, the nematocytes. These include pore-forming cytolytic toxins such as well studied actinoporins. In this work, we have shown that the non-nematocystic paralytic toxins, hydralysins, from the green hydra Chlorohydra viridissima comprise a highly diverse group of beta-pore-forming proteins, distinct from other cnidarian toxins but similar in activity and structure to bacterial and fungal toxins. Functional characterization of hydralysins reveals that as soluble monomers they are rich in beta-structure, as revealed by far UV circular dichroism and computational analysis. Hydralysins bind erythrocyte membranes and form discrete pores with an internal diameter of approximately 1.2 nm. The cytolytic effect of hydralysin is cell type-selective, suggesting a specific receptor that is not a phospholipid or carbohydrate. Multiple sequence alignment reveals that hydralysins share a set of conserved sequence motifs with known pore-forming toxins such as aerolysin, epsilon-toxin, alpha-toxin, and LSL and that these sequence motifs are found in and around the poreforming domains of the toxins. The importance of these sequence motifs is revealed by the cloning, expression, and mutagenesis of three hydralysin isoforms that strongly differ in their hemolytic and paralytic activities. The correlation between the paralytic and cytolytic activities of hydralysin suggests that both are a consequence of receptor-mediated pore formation. Hydralysins and their homologues exemplify the wide distribution of beta-pore formers in biology and provide a useful model for the study of their molecular mode of action.  相似文献   

7.
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections (UTIs), and they have the capacity to induce the death and exfoliation of target uroepithelial cells. This process can be facilitated by the pore-forming toxin alpha-hemolysin (HlyA), which is expressed and secreted by many UPEC isolates. Here, we demonstrate that HlyA can potently inhibit activation of Akt (protein kinase B), a key regulator of host cell survival, inflammatory responses, proliferation, and metabolism. HlyA ablates Akt activation via an extracellular calcium-dependent, potassium-independent process requiring HlyA insertion into the host plasma membrane and subsequent pore formation. Inhibitor studies indicate that Akt inactivation by HlyA involves aberrant stimulation of host protein phosphatases. We found that two other bacterial pore-forming toxins (aerolysin from Aeromonas species and alpha-toxin from Staphylococcus aureus) can also markedly attenuate Akt activation in a dose-dependent manner. These data suggest a novel mechanism by which sublytic concentrations of HlyA and other pore-forming toxins can modulate host cell survival and inflammatory pathways during the course of a bacterial infection.  相似文献   

8.
Epsilon-toxin from Clostridium perfringens is a lethal toxin. Recent studies suggest that the toxin acts via an unusually potent pore-forming mechanism. Here we report the crystal structure of epsilon-toxin, which reveals structural similarity to aerolysin from Aeromonas hydrophila. Pore-forming toxins can change conformation between soluble and transmembrane states. By comparing the two toxins, we have identified regions important for this transformation.  相似文献   

9.
Cry46Ab is a Cry toxin derived from Bacillus thuringiensis TK-E6. Cry46Ab is not significantly homologous to other mosquitocidal Cry or Cyt toxins and is classified as an aerolysin-type pore-forming toxin based on structural similarity. In this study, the potency of Cry46Ab was assessed for its potential application to mosquito control. A synthetic Cry46Ab gene, cry46Ab-S1, was designed to produce recombinant Cry46Ab as a glutathione-S-transferase fusion in Escherichia coli. Recombinant Cry46Ab showed apparent toxicity to Culex pipiens larvae, with a 50% lethal dose of 1.02 μg/ml. In an artificial lipid bilayer, Cry46Ab activated by trypsin caused typical current transitions between open and closed states, suggesting it functions as a pore-forming toxin similar to other Cry and Cyt toxins. The single-channel conductance was 103.3 ± 4.1 pS in 150 mM KCl. Co-administration of recombinant Cry46Ab with other mosquitocidal Cry toxins, especially the combination of Cry4Aa and Cry46Ab, resulted in significant synergistic toxicity against C. pipiens larvae. Co-administration of multiple toxins exhibiting different modes of action is believed to prevent the onset of resistance in insects. Our data, taken in consideration with the differences in its structure, suggest that Cry46Ab could be useful in not only reducing resistance levels but also improving the insecticidal activity of Bt-based bio-insecticides.  相似文献   

10.
Amoebapore, a 77-residue peptide with pore-forming activity from the human pathogen Entamoeba histolytica, is implicated in the killing of phagocytosed bacteria and in the cytolytic reaction of the amoeba against host cells. Previously, we structurally and functionally characterized three amoebapore isoforms in E. histolytica but recognized only one homolog in the closely related but non-pathogenic species Entamoeba dispar. Here, we identified two novel amoebapore homologs from E. dispar by molecular cloning. Despite strong resemblance of the primary structures of the homologs, molecular modeling predicts a species-specific variance between the peptide structures. Parallel isolation from trophozoite extracts of the two species revealed a lower amount of pore-forming peptides in E. dispar and substantially higher activity of the major isoform from E. histolytica towards natural membranes than that from E. dispar. Differences in abundance and activity of the lytic polypeptides may have an impact on the pathogenicity of amoebae.  相似文献   

11.
Lipids are hydrophobic molecules which play critical functions in cells, in particular, they are essential constituents of membranes, whereas bacterial toxins are mainly hydrophilic proteins. All bacterial toxins interact first with their target cells by recognizing a surface receptor, which is either a lipid or a lipid derivative, or another compound but in a lipid environment. Most bacterial toxins are PFTs (pore-forming toxins) which oligomerize and insert into the lipid bilayer. A common mechanism of action involves the formation of a beta-barrel structure, resulting from the assembly of individual beta-hairpin(s) from individual monomers. An essential step for intracellular active toxins is to translocate their enzymatic part into the cytosol. Some toxins use a translocation mechanism based on pore formation similar to that of PFTs, others undergo a yet unclear 'chaperone' process.  相似文献   

12.
VacA toxin from the cancer-inducing bacterium Helicobacter pylori is currently classified as a pore-forming toxin but is also considered a multifunctional toxin, apparently causing many pleiotropic cell effects. However, an increasing body of evidence suggests that VacA could be the prototype of a new class of monofunctional A-B toxins in which the A subunit exhibits pore-forming instead of enzymatic activity. Thus, VacA may use a peculiar mechanism of action, allowing it to intoxicate the human stomach. By combining the action of a cell-binding domain, a specific intracellular trafficking pathway and a novel mitochondrion-targeting sequence, the VacA pore-forming domain is selectively delivered to the inner mitochondrial membrane to efficiently kill target epithelial cells by apoptosis.  相似文献   

13.
Sperm whale myoglobin can be considered as the model protein of the globin family. The pH-dependence of the interactions of apomyoglobin with lipid bilayers shares some similarities with the behavior of pore-forming domains of bacterial toxins belonging also to the globin family. Two different states of apomyoglobin bound to a lipid bilayer have been characterized by using hydrogen/deuterium exchange experiments and mass spectrometry. When bound to the membrane at pH 5.5, apomyoglobin remains mostly native-like and interacts through alpha-helix A. At pH 4, the binding is related to the stabilization of a partially folded state. In that case, alpha-helices A and G are involved in the interaction. At this pH, alpha-helix G, which is the most hydrophobic region of apomyoglobin, is available for interaction with the lipid bilayer because of the loss of the tertiary structure. Our results show the feasibility of such experiments and their potential for the characterization of various membrane-bound states of amphitropic proteins such as pore-forming domains of bacterial toxins. This is not possible with other high-resolution methods, because these proteins are usually in partially folded states when interacting with membranes.  相似文献   

14.
Pore-forming toxins are biological weapons produced by a variety of living organisms, particularly bacteria but also by insects, reptiles, and invertebrates. These proteins affect the cell membrane of their target, disrupting permeability and leading eventually to cell death. The pore-forming toxins typically transform from soluble, monomeric proteins to oligomers that form transmembrane channels. The Cry toxins produced by Bacillus thuringiensis are widely used as insecticides. These proteins have been recognized as pore-forming toxins, and their primary action is to lyse midgut epithelial cells in their target insect. To exert their toxic effect, a prepore oligomeric intermediate is formed leading finally to membrane-inserted oligomeric pores. To understand the role of Cry oligomeric pre-pore formation in the insecticidal activity we isolated point mutations that affected toxin oligomerization but not their binding with the cadherin-like, Bt-R(1) receptor. We show the helix alpha-3 in domain I contains sequences that could form coiled-coil structures important for oligomerization. Some single point mutants in this helix bound Bt-R(1) receptors with similar affinity as the wild-type toxin, but were affected in oligomerization and were severally impaired in pore formation and toxicity against Manduca sexta larvae. These data indicate the pre-pore oligomer and the toxin pore formation play a major role in the intoxication process of Cry1Ab toxin in insect larvae.  相似文献   

15.
In this work, we report likely recurrent horizontal (lateral) gene transfer events of genes encoding pore-forming toxins of the aerolysin family between species belonging to different kingdoms of life. Clustering based on pairwise similarity and phylogenetic analysis revealed several distinct aerolysin sequence groups, each containing proteins from multiple kingdoms of life. These results strongly support at least six independent transfer events between distantly related phyla in the evolutionary history of one protein family and discount selective retention of ancestral genes as a plausible explanation for this patchy phylogenetic distribution. We discuss the possible roles of these proteins and show evidence for a convergent new function in two extant species. We hypothesize that certain gene families are more likely to be maintained following horizontal gene transfer from commensal or pathogenic organism to its host if they 1) can function alone; and 2) are immediately beneficial for the ecology of the organism, as in the case of pore-forming toxins which can be utilized in multicellular organisms for defense and predation.  相似文献   

16.
A remarkable group of proteins challenge the notions that protein sequence determines a unique three-dimensional structure, and that membrane and soluble proteins are very distinct. The pore-forming toxins typically transform from soluble, monomeric proteins to oligomers that form transmembrane channels. Recent structural studies provide ideas about how these changes take place. The recently solved structures of the beta-pore-forming toxins LukS, varepsilon-toxin and intermedilysin confirm that the pore-forming regions are initially folded up on the surfaces of the soluble precursors. To create the transmembrane pores, these regions must extend and refold into membrane-inserted beta-barrels.  相似文献   

17.
Pore-forming toxins constitute a class of potent virulence factors that attack their host membrane in a two- or three-step mechanism. After binding to the membrane, often aided by specific receptors, they form pores in the membrane. Pore formation either unfolds a cytolytic activity in itself or provides a pathway to introduce enzymes into the cells that act upon intracellular proteins. The elucidation of the pore-forming mechanism of many of these toxins represents a major research challenge. As the toxins often refold after entering the membrane, their structure in the membrane is unknown, and key questions such as the stoichiometry of individual pores and their mechanism of oligomerization remain unanswered. In this study, we used single subunit counting based on fluorescence spectroscopy to explore the oligomerization process of the Cry1Aa toxin of Bacillus thuringiensis. Purified Cry1Aa toxin molecules labeled at different positions in the pore-forming domain were inserted into supported lipid bilayers, and the photobleaching steps of single fluorophores in the fluorescence time traces were counted to determine the number of subunits of each oligomer. We found that toxin oligomerization is a highly dynamic process that occurs in the membrane and that tetramers represent the final form of the toxins in a lipid bilayer environment.  相似文献   

18.
Pore-forming toxins, many of which are pathogenic to humans, are highly dynamic proteins that adopt a different conformation in aqueous solution than in the lipid environment of the host membrane. Consequently, their crystal structures obtained in aqueous environment do not reflect the active conformation in the membrane, making it difficult to deduce the molecular determinants responsible for pore formation. To obtain structural information directly in the membrane, we introduce a fluorescence technique to probe the native topology of pore-forming toxins in planar lipid bilayers and follow their movement during pore formation. Using a Förster resonance energy transfer (FRET) approach between site-directedly labeled proteins and an absorbing compound (dipicrylamine) in the membrane, we simultaneously recorded the electrical current and fluorescence emission in horizontal planar lipid bilayers formed in plastic chips. With this system, we mapped the topology of the pore-forming domain of Cry1Aa, a biological pesticide from Bacillus thuringiensis, by determining the location of the loops between its seven α helices. We found that the majority of the toxins initially traverse from the cis to the trans leaflet of the membrane. Comparing the topologies of Cry1Aa in the active and inactive state in order to identify the pore-forming mechanism, we established that only the α3–α4 hairpin translocates through the membrane from the trans to the cis leaflet, whereas all other positions remained constant. As toxins are highly dynamic proteins, populations that differ in conformation might be present simultaneously. To test the presence of different populations, we designed double-FRET experiments, where a single donor interacts with two acceptors with very different kinetics (dipicrylamine and oxonol). Due to the nonlinear response of FRET and the dynamic change of the acceptor distribution, we can deduce the distribution of the acceptors in the membrane from the time course of the donor fluorescence. We found that Cry1Aa is present on both membrane leaflets.  相似文献   

19.
Kissper is a 39-residue peptide isolated from kiwi fruit (Actinidia deliciosa). Its primary structure, elucidated by direct protein sequencing, is identical to the N-terminal region of kiwellin, a recently reported kiwi fruit allergenic protein, suggesting that kissper derives from the in vivo processing of kiwellin. The peptide does not show high sequence identity with any other polypeptide of known function. However, it displays a pattern of cysteines similar, but not identical, to those observed in some plant and animal proteins, including toxins involved in defence mechanisms. A number of these proteins are also active on mammalian cells. Functional characterization of kissper showed pH-dependent and voltage-gated pore-forming activity, together with anion selectivity and channeling in model synthetic PLMs, made up of POPC and of DOPS:DOPE:POPC. A 2DNMR analysis indicates that in aqueous solution kissper has only short regions of regular secondary structure, without any evident similarity with other bioactive peptides. Comparative analysis of the structural and functional features suggests that kissper is a member of a new class of pore-forming peptides with potential effects on human health.  相似文献   

20.
Membrane disruption can efficiently alter cellular function; indeed, pore-forming toxins (PFTs) are well known as important bacterial virulence factors. However, recent data have revealed that structures similar to those found in PFTs are found in membrane active proteins across disparate phyla. Many similarities can be identified only at the 3D-structural level. Of note, domains found in membrane-attack complex proteins of complement and perforin (MACPF) resemble cholesterol-dependent cytolysins from Gram-positive bacteria, and the Bcl family of apoptosis regulators share similar architectures with Escherichia coli pore-forming colicins. These and other correlations provide considerable help in understanding the structural requirements for membrane binding and pore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号