首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies in animal models suggest that the integrin adhesion protein VLA-4 may play an important role in lymphopoiesis. The relationship between cell adhesion and lymphopoiesis in humans has been difficult to study because of the relative rarity and stringent in vitro growth requirements of lymphoid progenitors from normal adult human bone marrow. To determine the functional significance of VLA-4-mediated adhesion in human lymphopoiesis, we developed a culture system in which a bone marrow-derived adherent layer supports the formation of colonies of terminal deoxynucleotidyl transferase (TdT)-positive lymphoid precursor cells from normal adult human bone marrow. Limiting dilution studies were consistent with clonal origin of these colonies. CFU-TdT were enriched in the CD34+ bone marrow fraction, consistent with CD34 expression by other hematopoietic progenitors. CD34 expression and lack of lineage-specific markers in a significant proportion of the TdT+ colony cells suggest that the TdT+ CFU may represent an uncommitted lymphoid progenitor cell. Development of TdT+ colonies required direct contact with the adherent layer and was significantly inhibited by specific anti-VLA-4 alpha chain antibody, suggesting a functional role for the previously reported VLA-4-dependent adhesion of human B cell precursors to bone marrow-derived fibroblasts.  相似文献   

2.
A dual-laser fluorescence-activated cell sorter was utilized to study the distribution of the surface IgM and IgD on individual B cells of normal and immune-defective CBA/N mice. Cells from different lymphoid organs and from developing mice were studied. Two major populations of cells were seen. Those with low densities of surface IgM and intermediate-high densities of surface IgD were relatively or totally absent from the bone marrow, spleens, and lymph nodes of adult, immune-defective (CBA/N x DBA/2)F1 male mice, and developed late in ontogeny in the lymphoid organs of normal F1 female mice. By contrast, the second major population, with intermediate-high surface IgM and low surface IgD, was found in highest frequency in the lymphoid organs of immature mice, the bone marrow of adult mice, and the lymphoid organs of F1 male mice compared to F1 female mice at any age. These two major populations of B cells were further subdivided into five groups of cells to better define the surface IgM and IgD characteristics of developing B cells of immune-defective and normal mice. The relationship of these groups of cells to populations defined by other criteria are discussed.  相似文献   

3.
In C57BL mice, bone marrow lymphoid regeneration after a sublethal irradiation is modified by a graft of normal marrow cells. This effect is suppressed in thymectomized mice since a lymphoid peak is observed after a 350 R irradiation; its composition is heterogeneous: small lymphocytes, lymphoblasts and peculier cells named "X cells". The same phenomenon is observed in mice where all the thymocytes and thymus derived and peripheral lymphocytes are destroyed. These results exclude that bone marrow lymphoid regeneration after irradiation is due to a migration of lymphoid cells of thymic origin to the marrow. They could be explained by the effect of a humoral thymic factor on marrow lymphopoiesis.  相似文献   

4.
The T cell populations present in normal murine bone marrow have not been previously analyzed in detail, mainly because of their relative rarity. In order to permit such analyses, bone marrow T cells were enriched by depleting Mac1-positive cells, which constitute 65 to 90% of bone marrow cells (BMC), and then studied by two-color flow cytometry. Analysis of the remaining cells revealed that the T cell profile of adult murine bone marrow is markedly different from that of other lymphoid organs. A very high proportion of bone marrow CD3+ cells (approximately one-third) are CD4-CD8-. CD3+CD4-CD8- cells are much more concentrated among BMC T cells than among thymocytes or splenic T cells, suggesting that bone marrow may be either a site of extrathymic TCR gene rearrangement, or a major site to which such cells home from the thymus. The expression of NK1.1 was also evaluated on Mac1-depleted BMC populations. Surprisingly, up to 39% of alpha beta TCR+ BMC were found to express NK1.1. Most alpha beta TCR+NK1.1+ BMC also expressed CD4 or CD8. NK1.1+ alpha beta TCR+ cells represented a much greater proportion of BMC T cells than of other lymphoid (splenocyte or thymocyte) T cell populations. Mac1-depleted BMC of nude mice contained very few cells with this phenotype. These results are consistent with the hypothesis that NK1.1+ alpha beta TCR+ cells are generated primarily in the thymus of normal animals and migrate preferentially to bone marrow, where they may function as regulatory elements in hematopoiesis.  相似文献   

5.
Allogeneic chimeras are valuable tools for studies of complex immune cell interactions in vivo. Mice with severe combined immune deficiency (scid) should be ideal hosts for chimerism with allogeneic bone marrow cells as these animals lack mature T and B lymphocytes capable of reacting against donor alloantigens. However, it has been difficult to achieve full reconstitution of adult scid mice even using coisogenic bone marrow grafts without prior irradiation of the recipient. We explored ways to generate complete reconstitution of scid mice with allogeneic bone marrow. Unirradiated adult scid recipients of allogeneic bone marrow were only marginally reconstituted. Adult scid mice pretreated with 250 R were reconstituted with allogeneic bone marrow as measured by serum IgM concentration, peripheral lymphoid cellularity, and mitogen responses, but a potentially important immunologic deficit was found in these mice: 250 R caused a 70% loss of scid macrophages and dendritic cells which persisted at least 5 months. By contrast, when scid mice were injected i.p. with allogeneic bone marrow within the first 24 h after birth, rapid and complete reconstitution of both T and B cell lineages was achieved, and the animals had APC that were both donor and host in origin. Considering the extent and duration of engraftment (43 wk) by allogeneic cells in neonatally transplanted scid mice, it was anticipated that their bone marrow would be chimeric. However, the bone marrow contained very few donor-derived cells, suggesting that lymphopoiesis may be taking place in other organs in these chimeras.  相似文献   

6.
Lymphoid and myeloid cells isolated from second trimester fetal lymphoid organs were characterized by utilizing a panel of monoclonal antibodies that define human lineage-restricted, differentiation, histocompatibility, and activation antigens. At distinct gestational stages, the appearance of morphologically identifiable lymphoid and myeloid cells paralleled the appearance of cells expressing definable lymphoid and myeloid antigens. The proportion of cells in fetal liver, bone marrow, and spleen that expressed histocompatibility, myeloid, and B cell antigens increased with fetal maturation. In contrast, even the earliest fetal thymuses studied were of a phenotype no different than that seen during later stages of ontogeny. Although the cellular lineage of most fetal hematopoietic cells could be identified by this panel of reagents, a considerable number of fetal liver and bone marrow cells did not express any of these antigens, suggesting the possibility that they might represent early hematopoietic progenitor cells. These studies support the notion that the adult cellular phenotype is the result of both an orderly acquisition of differentiation antigens and the migration of these primitive cellular populations to specific fetal organs. Identification of hematopoietic progenitors in fetal tissues may facilitate the identification and isolation of early lymphoid and myeloid progenitor cells in adults.  相似文献   

7.
Summary After bone marrow transplantation (BMT), it is important to monitor the bone marrow and lymphoid cell populations of the recipient to document engraftment. When donor and recipient are of unlike sex, the sex chromosomes serve as a useful marker to determine cellular origin. When donor and recipient are of like sex, autosomal heteromorphisms can be used to identify the origin of cells in metaphase. Using Q-banding, we found that 17 of 20 patient/donor pairs (85%) examined showed at least one chromosome heteromorphism that distinguished between recipient and donor cells with certainty. Five of the patients were followed up after BMT in order to document engraftment. Donor metaphases could be detected in the marrow within two weeks of BMT when the graft was successful. Chimaerism was detected in the lymphocyte population even when the graft persisted. In a case of graft failure, donor cells did not persist in the marrow, and the lymphocyte population did not convert to donor type. These studies demonstrate that autosomal heteromorphisms are useful in the study of myeloid and lymphoid chimaeric states after BMT.  相似文献   

8.
We have examined human B lymphocytes at different stages of differentiation for the expression of surface receptors for the C3d fragment of complement. C3d receptors (C3dR) were identified by indirect immunofluorescence using the HB-5 monoclonal antibody, which recognizes a 145,000 m.w. C3dR molecule on B lymphocytes. Pre-B and immature B cells from fetal bone marrow and liver did not express C3dR, whereas a small subpopulation (25%) of B cells in fetal spleen were C3dR+. Approximately 50% of the B cells in adult bone marrow were C3dR+, whereas the more mature B cells in the blood of newborns and adults and in peripheral lymphoid tissue of adults uniformly expressed the C3dR. Activated B cells responsive to T cell-derived differentiation factors were C3dR+, whereas plasma cells rarely expressed C3dR. T cells, NK cells, erythrocytes, and myelomonocytic cells did not express detectable surface C3dR. These results suggest that in hematopoietic and lymphoid tissues, the expression of C3dR is a specific feature of relatively mature lymphoid cells of B lineage.  相似文献   

9.
A year ago, reproductive biologists and general public were astonished with evidence reported by Johnson et al. in Nature 428:145 that mammalian ovaries possess persisting large germline stem cells, which allegedly enable follicular renewal in adult females. Recently, the same research group declared such view obscure, and reported that mammalian oocytes originate from putative germ cells in bone marrow and are distributed by peripheral blood to the ovaries (Cell 122:303). While neglecting available data on the germ cell origin from the ovarian surface epithelium (OSE) in adult mouse and human females and complexity of follicular renewal in humans, the authors widely extrapolated their observations on formation of allogeneic oocytes after bone marrow (or blood) transplantation in ovaries of adult mice treated with cytostatics to clinical implications in the public media. Yet, the resulting outcome that such allogeneic oocytes may enable the propagation of ovarian cycles is a poor alleviation for the women with ovarian infertility. Women lacking primary follicles, or carrying follicles with low quality eggs persisting in aging ovaries, are not concerned about the lack of menstrual cycles or ovarian steroids, but about virtually no chance of having genetically related children. Johnson et al. also reported that the germ cell formation in bone marrow disappears in ovariectomized mice. Such observation, however, raises solid doubts on the bone marrow origin of oocytes. Since germ cells developing from the OSE cells of adult human ovaries during periodical follicular renewal are known to enter blood vessels in order to enable formation of primary follicles at distant ovarian sites, they also contaminate peripheral blood and hence bone marrow. Better knowledge on the complexity of follicular renewal in humans and exploration of a potential of human OSE cells to produce new oocytes in vitro are essential for novel approaches to the autologous treatment of premature ovarian failure and age induced ovarian infertility.  相似文献   

10.
The histology of the specific and non-specific antibody response in mouse and rat bone marrow was studied after subcutaneous priming and intravenous boosting with horseradish peroxidase (HRP). Cells producing specific antibody against HRP were found only occasionally in the bone marrow after subcutaneous priming. After the intravenous boost injection their number gradually increased. These anti-HRP forming cells were found as single cells, randomly dispersed throughout the bone marrow. Such a random distribution was also found for cytoplasmic (non-specific) immunoglobulin containing cells. At no time point after immunization could lymphoid aggregates or trapping of immune complexes be observed in the bone marrow of either species. On the basis of these observations it is concluded that the bone marrow forms a suitable microenvironment for immigrating antibody-forming cells but does not contribute actively to the induction of the immune response.  相似文献   

11.
本文介绍53只正常树鼩的骨髓象,结果如下:胸骨的粒系细胞为55.96%,红系细胞为29.42%;淋巴细胞为12.16%;其它细胞为2.47%;粒系细胞与有核红细胞的比值为1.9:1。股骨的粒系细胞为57.37%;红系细胞为28.72%;淋巴细胞为11.80%;其它细胞为2.12%;粒系细胞与有核红细胞的比值为2.0:1。在性别之间,胸骨与股骨之间,各个细胞的分布比例无明显差异。此外,发现树鼩的骨髓细胞有以下几个特点:具有较高数量的嗜碱性粒细胞;出现少量的环形核粒细胞;存在大量退化细胞和裸核细胞。  相似文献   

12.
The concept of lymphoid differentiation in the human gastrointestinal tract is controversial but is the focus of this study, which examined adult human small intestinal tissue for the presence of CD34(+)CD45(+) hemopoietic stem cells (HSCs) and lymphoid progenitors. Flow cytometry demonstrated that over 5% of leukocytes (CD45(+) cells) isolated from human gut were HSCs coexpressing CD34, a significantly higher incidence than in matched peripheral blood or control bone marrow. HSCs were detected in cell preparations from both the epithelium and lamina propria of all samples tested and localized to the intestinal villous and crypt regions using immunofluorescence. A high proportion of gut HSCs expressed the activation marker CD45RA, and few expressed c-kit, indicating ongoing differentiation. The vast majority of intestinal HSCs coexpressed the T cell Ag, CD7 (92% in the epithelium, 80% in the lamina propria) whereas <10% coexpressed the myeloid Ag CD33, suggesting that gut HSCs are a relatively mature population committed to the lymphoid lineage. Interestingly, almost 50% of epithelial layer HSCs coexpressed CD56, the NK cell Ag, compared with only 10% of the lamina propria HSC population, suggesting that the epithelium may be a preferential site of NKR(+) lymphoid differentiation. In contrast, bone marrow HSCs displayed low coexpression of CD56 and CD7 but high coexpression of CD33. The phenotype of intestinal HSCs, which differs significantly from circulating or bone marrow HSCs, is consistent with a role in local lymphoid development.  相似文献   

13.
Heat-killed BCG in paraffin exerted a lethal effect on CS7BL/6 mice irradiated lethally and transferred with syngeneic bone marrow cells. Such an effect was not detectable when mice were subjected to adult thymectomy and used as the hosts. Lymphoid cells from such nonthymectomized mice exhibited cytotoxicity to syngeneic tumor cells but not to allogeneic tumor cells in an in vivo cytotoxicity test and induced splenomegaly in sublethally irradiated syngeneic recipients after systemic transfer. The cytotoxicity of such lymphoid cells was abolished by a treatment with anti-θ serum and complement. In the bone marrow of mice irradiated and transferred with bone marrow cells, the number of nucleated cells, the ratio of myeloid to erythroid cell series, and the percentage of lymphocytes were increasd by BCG injection. These results suggest the possibility that self-tolerance may be broken by BCG stimulation in the process of reconstitution of lymphoid cells in the irradiated mice.  相似文献   

14.
The transplanted limb contains bone marrow tissue. The hematopoietic cells contained in the bone of the graft normally differentiate after transplantation and can be released to the recipient. The cells migrate to the recipient bone marrow cavities and lymphoid organs. This causes the immune reaction between the donor and the recipient, which develops not only in the graft itself but also in the recipient immune organs where donor bone marrow cells home. The purpose of this study was to investigate the process of migration of the hematopoietic cells from the donor limb to the recipient bone marrow cavities and lymphoid tissues. The questions the authors asked were: what is the rate of release of bone marrow cells from the transplanted bone, where do the released bone marrow cells home in the recipient, how fast are donor bone marrow cells rejected by the recipient, and can some bone marrow cells homing in the recipient tissues survive and create a state of microchimerism. Experiments were performed on Brown Norway and Lewis inbred rat strains (n = 30). Limb donors received intravenous chromium-51-labeled bone marrow cells. Twenty-four hours later, the limb with homing labeled bone marrow cells was transplanted to an allogeneic or syngeneic recipient. The rate of radioactivity of bone marrow cells released from the graft and homing in recipient tissues was measured after another 24 hours. To eliminate factors adversely affecting homing such as the "crowding effect" and allogeneic elimination of bone marrow cells by natural killer cells, total body irradiation and antiasialo-GM1 antiserum were applied to recipients before limb transplantation. In rats surviving with the limb grafts for 7 and 30 days, homing of donor bone marrow cells was studied by specific labeling of donor cells and flow cytometry as well as by detecting donor male Y chromosome. The authors found that transplantation of the limb with bone marrow in its natural spatial relationship with stromal cells and blood perfusion brings about immediate but low-rate release of bone marrow cells and their migration to recipient bone marrow and lymphoid tissues. Large portions of allogeneic bone marrow cells are rapidly destroyed in the mechanism of allogeneic elimination by radioresistant but antiasialo-GM1-sensitive natural killer cells. Some transplanted bone marrow cells remain in the recipient's tissues and create a state of cellular and DNA microchimerism. A low number of physiologically released donor bone marrow cells do not seem to adversely affect the clinical outcome of limb grafting. Quite the opposite, a slight prolongation of the graft survival time was observed.  相似文献   

15.
Contribution of hematopoietic stem cells to skeletal muscle   总被引:24,自引:0,他引:24  
Cells from adult bone marrow participate in the regeneration of damaged skeletal myofibers. However, the relationship of these cells with the various hematopoietic and nonhematopoietic cell types found in bone marrow is still unclear. Here we show that the progeny of a single cell can both reconstitute the hematopoietic system and contribute to muscle regeneration. Integration of bone marrow cells into myofibers occurs spontaneously at low frequency and increases with muscle damage. Thus, classically defined single hematopoietic stem cells can give rise to both blood and muscle.  相似文献   

16.
Morbidity and mortality in mice were observed upon administration of exogenous DNA following their pre-treatment with a cytostatic agent cyclophosphamide. Upon intraperitoneal injections, the fragments of exogenous DNA reached bone marrow cells. These cells were also found to internalize up to 1800 kb of exogenous DNA ex vivo. The 18-24 h time frame represents a final stage in the repair of DNA double-strand breaks, so when exogenous DNA was administered within this critical period of time, pathological changes were observed in many target organs. Namely, bone marrow cells underwent a sustained increase in apoptosis. Copy number of B1 and B2 DNA repeats in bone marrow cells remained unchanged, whereas in the control group of animals their levels were significantly decreased. Finally, the bone marrow cells of moribund animals completely lacked lymphoid progenitors, yet the CD34+ hematopoietic stem cell counts were normal. Histopathology analysis suggested that mice died due to accidental involution of lymphoid organs combined with a systemic inflammatory process induced by massive administration of exogenous DNA and depletion of lymphoid lineage.  相似文献   

17.
Treatment of malignant diseases with radiation therapy, chemotherapy, and immunodepressants requires subsequent restoration of bone marrow by the use of transplantation of donor bone marrow or separated adult stem cells to the body. During the next 1–15 years, in these patients, the risk of malignant neoplasia substantially increases as compared to healthy persons. This was previously considered as the effect of treatment. However, it has been found that part of cells and the stroma of a secondary tumor consist of progenies of transplanted stem cells. This demonstrates an important role of stem cells in tumorigenesis. Numerous studies also show that adult mouse or human stem cells cultured in vitro can form foci of sarcoma, cancer or other types of malignant growth. Malignant growth is more intense when chronic inflammation is present in the body. A lot of experimental data including studies in humans demonstrated that, after transplantation, stem cells actively occupy the tumor stroma, stimulate tumorigenesis and its metastasis. An important condition of human life is the presence of strong homeostatic mechanisms that control the number of stem cells in the body and limit their division even in regeneration foci. After transplantation of stem cells, their number in the blood and, correspndingly, in a pathological regeneration location increases by the dozens. This level of cells in the body cannot be reached spontaneously. This significantly enhances the rate of tissue regeneration, which creates conditions for malignant growth.  相似文献   

18.
Studies of the action of leucogenenol on the peripheral leukocytes, the myeloid cells found in bone marrow, and the lymphoid cells found in the spleen of sublethally irradiated mice strongly suggest that leucogenenol stimulates the maturation and/or cellular division of cells of both the myeloid and lymphoid series. Accordingly, as indicated by the increase in the number of peripheral leukocytes, as well as the increase in the number of myeloid and lymphoid cells found in the bone marrow and spleen, mice treated with leucogenenol appear to recover more rapidly than untreated controls.  相似文献   

19.
Current evidence indicates an immunostimulating role for complex carbohydrates, i.e., polysaccharides, from several plant sources. In the present work, we determined the specific in vivo effects, with time of administration, of one such compound, a neutral arabinogalactan from larch not only on immune (lymphoid) cells, but also on natural killer (NK) lymphoid cells, as well as a variety of other hemopoietic cells in both the bone marrow and spleen of healthy, young adult mice. The latter were injected daily (i.p.) with arabinogalactan (500 microg in 0.1 ml pH 7.2 phosphate buffered saline-PBS) for 7 or 14 days. Additional, aged (1 1/2-2 yr) mice were similarly injected for 14 days only. Control mice were given the PBS vehicle in all cases, following the above injection regimen. Animals from all groups were sampled 24 h after the final injection and the immune and hemopoietic cell populations in the bone marow and spleen were assessed quantitatively. The results indicated that immediately following either 7 or 14 days of arabinogalactan administration to young, adult mice, lymphoid cells in the bone marrow were significantly decreased (p < 0.004; p < 0.001, respectively) relative to controls but remained unchanged at both time intervals in the spleen. NK cells, after 7 days of arabinogalactan exposure, were also decreased significantly in the bone marrow (p < 0.02), but unchanged in the spleen. After 14 days' exposure to the polysaccharide, NK cells in the bone marrow had returned to normal (control) levels, but were increased in the spleen (p < 0.004) to levels greater than 2-fold that of control. Among other hemopoietic cell lineages, none was influenced in the bone marrow or spleen by one-week administration of arabinogalactan; however, after two-week exposure, precursor myeloid cells and their mature (functional) progeny (granulocytes), were significantly reduced in the spleen (p < 0.043; p < 0.006, respectively), as were splenic monocytes (p < 0.001). These lineages in the bone marrow, however, remained steadfastly unaltered even after 14 days of continuous exposure to the agent. Of the vast cascade of cytokines induced in the presence of this polysaccharide, it appears that immunopoiesis- and hemopoiesis-inhibiting ones are most prevalent during at least the first two weeks of daily exposure.  相似文献   

20.
Conjunctival mucosa-associated lymphoid tissue (MALT) lymphoma is an extranodal marginal zone B-cell lymphoma that is characterized by an exaggerated clonal expansion of B cells, which implicate a pathological proliferative response to antigen(s) including bacteria. Helicobacter pylori (H. pylori) infection is recognized as one of the causative agents of gastric MALT lymphoma; however, it has not been reported in extra gastric MALT lymphoma. We studied 5 patients (4 adults and 1 child) with salmon-colored conjunctival lesions. One patient also had a history of abnormal bone marrow biopsy a year earlier with lymphoid aggregates involving 5% of the overall bone marrow. The conjunctival lesions of the 5 patients were biopsied. Histopathological diagnoses were consistent with conjunctival MALT lymphoma. Lymphoma and normal conjunctival cells were microdissected using laser capture microscopy or manual techniques. DNA was extracted and subjected to PCR amplification using H. pylori gene-specific primers from the urease B and vac/m2 gene. Cells from chronic conjunctivitis (normal lymphocytes), conjunctival human T-cell lymphotropic virus type-1/adult T-cell leukemia/lymphoma (HTLV-1/ATL), and orbital B-cell lymphoma were also microdissected, processed and analyzed. PCR amplification and Southern blot hybridization demonstrated H. pylori DNA in the conjunctival MALT lymphoma cells of 4/5 cases. The negative case was the one with a history of abnormal bone marrow. In contrast, H. pylori gene was not detected in normal conjunctival cells from the cases of MALT lymphoma or the lymphocytes, ATL and orbital B-lymphoma cells from the controls. These data suggest that H. pylori may play a role in conjunctival MALT lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号