首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
The influence of secondary structures of DNA oligonucleotides on thermodynamics and kinetics at the formation of their bimolecular complexes (duplexes) has been studied. The models considering inherent secondary structures of duplex components and their influence on quantitative thermodynamic and kinetic characteristics of the duplexes have been developed. The values of thermodynamic impacts given by individual structural elements of the double helix have been shown to depend on hairpin structuring of the duplex components. The "concentration" method to consider oligonucleotides intramolecular structure with thermodynamic parameters of bimolecular duplex formation has been proposed. According to stop-flow measurements, the observed values of association and dissociation constants are influenced by the presence of inherent structures in duplex components. The influence observed is increased with the lowering of the sample temperature. The analysis of experimental data involving the developed models provides the possibility to determine "proper" kinetic constants for the helix-to-coil transition. The difference between observed and calculated rate constants can amount up to two or more orders of magnitude.  相似文献   

2.
A self-complementary nucleotide sequence can form both a unimolecular hairpin and a bimolecular duplex. In this study, the secondary structures of the self-complementary DNA and RNA oligonucleotides with different sequences and lengths were investigated under various solution conditions by gel electrophoresis, circular dichroism (CD) and electron paramagnetic resonance (EPR) spectroscopy and a ultraviolet (UV) melting analysis. The DNA sequences tended to adopt a hairpin conformation at low cation concentrations, but a bimolecular duplex was preferentially formed at an elevated cationic strength. On the other hand, fully matched RNA sequences adopted a bimolecular duplex regardless of the cation concentration. The thermal melting experiments indicated a greater change in the melting temperature of the bimolecular duplexes (by ~20°C) than that of the hairpin (by ~10°C) by increasing the NaCl concentration from 10 mM to 1 M. Hairpin formations were also observed for the palindrome DNA sequences derived from Escherichia coli, but association of the complementary palindrome sequences was observed when spermine, one of the major cationic molecules in a cell, existed at the physiological concentration. The results indicate the role of cations for shifting the structural equilibrium toward a nucleotide assembly and implicate nucleotide structures in cells.  相似文献   

3.
Oligonucleotide analogues were synthesized whose internucleoside linker contains an amide bond and a methylamino group (C3′-NH-CO-CH2-N(CH3)-C5′). Melting curves for duplexes formed by modified oligonucleotides and natural oligonucleotides complementary to them were measured, and the melting temperatures and thermodynamic parameters of duplex formation were calculated. The introduction of one modified dinucleoside linker into the oligonucleotide only slightly decreases the melting temperatures of these duplexes compared with unmodified ones. The CD spectra of modified duplexes were studied, and their spatial structures are discussed.  相似文献   

4.
Oligonucleotide analogues bearing an acyclocytidine linked to thymidine with an amide (3′-O-CH2-CO-N-5′) bond were synthesized. Melting curves of duplexes formed by modified oligonucleotides and complementary natural oligomers were obtained and thermodynamic parameters of their formation were measured. Replacement of dCpT by a modified dinucleotide only moderately decreased the melting temperature of these modified duplexes in comparison with unmodified duplexes containing complementary natural bases. CD spectra of modified duplexes were studied, and the duplex spatial structures are discussed.  相似文献   

5.
Oligonucleotide analogues were synthesized whose internucleoside linker contains an amide bond and a methylamino group (C3'-NH-CO-CH2-N(CH3)-C5'). Melting curves for duplexes formed by modified oligonucleotides and natural oligonucleotides complementary to them were measured, and the melting temperatures and thermodynamic parameters of duplex formation were calculated. The introduction of one modified dinucleoside linker into the oligonucleotide only slightly decreases the melting temperatures of these duplexes compared with unmodified ones. The CD spectra of modified duplexes were studied, and their spatial structures are discussed.  相似文献   

6.
Oligonucleotide analogues bearing an acyclocytidine linked to thymidine by an amide (3'-O-CH2-CO-N-5') bond were synthesized. Melting curves of duplexes formed by modified oligonucleotides and complementary natural oligomers were obtained and thermodynamic parameters of their formation were measured. Replacement of dCpT by a modified dinucleotide only moderately decreased the melting temperature of these modified duplexes in comparison with unmodified duplexes containing complementary natural bases. CD spectra of modified duplexes were studied, and the duplex spatial structures are discussed. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   

7.
This study investigated the influence of the nature of oligonucleotides on the abilities to form antiparallel and parallel duplexes. Base pairing of homopurine DNA, 2’-O-MeRNA and RNA oligonucleotides with respective homopyrimidine DNA, 2’-O-MeRNA and RNA as well as chimeric oligonucleotides containing LNA resulted in the formation of 18 various duplexes. UV melting, circular dichroism and fluorescence studies revealed the influence of nucleotide composition on duplex structure and thermal stability depending on the buffer pH value. Most duplexes simultaneously adopted both orientations. However, at pH 5.0, parallel duplexes were more favorable. Moreover, the presence of LNA nucleotides within a homopyrimidine strand favored the formation of parallel duplexes.  相似文献   

8.
This is the first report to provide comprehensive thermodynamic and structural data concerning duplex, hairpin, quadruplex and i-motif structures in β-L-RNA series. Herein we confirm that, within the limits of experimental error, the thermodynamic stability of enantiomeric structural motifs is the same as that of naturally occurring D-RNA counterparts. In addition, formation of D-RNA/L-RNA heterochiral duplexes is also observed; however, their thermodynamic stability is significantly reduced in reference to homochiral D-RNA duplexes. The presence of three locked nucleic acid (LNA) residues within the D-RNA strand diminishes the negative effect of the enantiomeric, complementary L-RNA strand in the formation of heterochiral RNA duplexes. Similar behavior is also observed for heterochiral LNA-2′-O-methyl-D-RNA/L-RNA duplexes. The formation of heterochiral duplexes was confirmed by 1H NMR spectroscopy. The CD curves of homochiral L-RNA structural motifs are always reversed, whereas CD curves of heterochiral duplexes present individual features dependent on the composition of chiral strands.  相似文献   

9.
The effects of ions (i.e. Na+, Mg2+ and polyamines including spermidine and spermine) on the stability of various DNA oligonucleotides in solution were studied. These synthetic DNA molecules contained sequences that mimic various cellular DNA structures, such as duplexes, bulged loops, hairpins and/or mismatched base pairs. Melting temperature curves obtained from the ultraviolet spectroscopic experiments indicated that the effectiveness of the stabilization of cations on the duplex formation follows the order of spermine > spermidine > Mg2+ > Na+ > Tris–HCl buffer alone at pH 7.3. Circular dichroism spectra showed that salts and polyamines did not change the secondary structures of those DNA molecules under study. Surface plasmon resonance (SPR) observations suggested that the rates of duplex formation are independent of the kind of cations used or the structure of the duplexes. However, the rate constants of DNA duplex dissociation decrease in the same order when those cations are involved. The enhancement of the duplex stability by polyamines, especially spermine, can compensate for the instability caused by abnormal structures (e.g. bulged loops, hairpins or mismatches). The effects can be so great as to make the abnormal DNAs as stable as the perfect duplex, both kinetically and thermodynamically. Our results may suggest that the interconversion of various DNA structures can be accomplished readily in the presence of polyamine. This may be relevant in understanding the role of DNA polymorphism in cells.  相似文献   

10.
We studied the kinetic and thermodynamic effects of locked nucleic acid (LNA) modifications on parallel and antiparallel DNA duplexes. The LNA modifications were introduced at cytosine bases of the pyrimidine strand. Kinetic parameters evaluated from melting and annealing curves showed that the association and dissociation rate constants for the formation of the LNA-modified parallel duplex at 25.0 °C were 3 orders of magnitude larger and 6 orders of magnitude smaller, respectively, than that of the unmodified parallel duplex. The activation energy evaluated from the temperature-dependent rate constants was largely altered by the LNA modifications, suggesting that the LNA modifications affected a prenucleation event in the folding process. Moreover, thermodynamic parameters showed that the extent of stabilization by the LNA modification for parallel duplexes (3.6 kcal mol(-1) per one modification) was much more significant than that of antiparallel duplexes (1.6 kcal mol(-1)). This large stabilization was due to the decrease in ΔH° that was more favorable than the decrease in TΔS°. These quantitative parameters demonstrated that LNA modification specifically stabilized the noncanonical parallel duplex. On the basis of these observations, we succeeded to stabilize the parallel duplex by LNA modification at the physiological pH. These results can be useful in the rational design of functional molecules such as more effective antisense and antigene strands, more sensitive strands for detection of target DNA and RNA strands, and molecular switches responding to solution pH.  相似文献   

11.
H Gao  M Yang    A F Cook 《Nucleic acids research》1995,23(2):285-292
A convenient, practical route to the synthesis of disulfide-bridged oligonucleotides has been developed. Aliphatic linkers with terminal thiol groups have been attached to the phosphodiester backbones of partially or fully complementary oligonucleotide sequences and oxidized to yield covalently closed oligonucleotides with disulfide bridges. This procedure has been used to prepare a duplex with disulfide bridges at both ends and stem-loop sequences with single disulfide bridges. Oxidation of a self-complementary duplex possessing terminal thiol groups produced both hairpin and duplex structures with disulfide bridges, the relative proportions of each being dependent upon the reaction conditions. These bridged hairpin and duplex structures were shown to be interconvertible by reduction and re-oxidation. The melting profiles of disulfide-bridged oligonucleotides were compared with the same sequences without bridges and with sequences possessing triethylene glycol bridges, and in all cases the introduction of disulfide bridges resulted in a considerable increase in thermal stability. EcoRI endonuclease was capable of cleaving a disulfide-bridged duplex possessing a recognition site for this enzyme, thus supporting a lack of distortion of the recognition site. The disulfide bridges could be cleaved using a large excess of DTT to regenerate the corresponding sulfhydryl compounds. A study of the serum stabilities of disulfide-bridged oligonucleotides showed that the bridged duplexes were much more stable than their unmodified counterparts, whereas the rate of degradation of the stem-loop structures was more dependent upon the size of the loop than the presence or absence of the disulfide bridge. In summary, we have described a novel methodology, employing commercially available reagents, for the stabilization of oligonucleotide duplexes or stem-loop structures by disulfide bridge formation.  相似文献   

12.
Abstract

Six methylene(methylimino) (MMI, Bhat et al. J. Org. Chem., 61, 8186, 1996) linked oligonucleotides a-f (* = MMI linkage; 5′-GCGT*TT*TT*TT*TT*TGCG-3′) containing various combinations of 2′-O-methyl and 2′-fluoro substituent were synthesized as a model to study the global conformational change upon hybridization to the complement RNA. Fourier transform infrared (FTIR) spectroscopic technique has been used to study and compare the influence of these modifications on the solution conformation of 2′-modified MMI DNA-RNA duplexes. FTIR analysis of the single-stranded RNA (5′-CGCAAAAAAAAAACGC-3′) and the modified oligonucleotides a-f showed that all sugar residues adopted a C3′-endo conformation (North-type). Stable duplexes were formed when oligonucleotides a-f were hybridized to the complement RNA. These duplexes retained the original C3′-endo conformation for all sugar residues, hallmark of an A-form of duplex. We postulate that the observed preorganization of the sugar residues and oligonucleotides containing 2′-modified MMI modifications may play an important role in both improving the recognition of RNA target and enhancing the stability of duplex formation with RNA.  相似文献   

13.
Hofr C  Brabec V 《Biopolymers》2005,77(4):222-229
The effect of the location of the interstrand cross-link formed by trans-diamminedichloroplatinum(II) (transplatin) on the thermal stability and energetics of 15-mer DNA duplex has been investigated. The duplex containing single, site-specific cross-link, thermodynamically equivalent model structures (hairpins) and nonmodified duplexes were characterized by differential scanning calorimetry, temperature-dependent uv absorption, and circular dichroism. The results demonstrate that the formation of the interstrand cross-link of transplatin does not affect pronouncedly thermodynamic stability of DNA: the cross-link induces no marked changes not only in enthalpy, but also in "reduced" (concentration independent) monomolecular transition entropy. These results are consistent with the previous observations that interstrand cross-links of transplatin structurally perturb DNA only to a relatively small extent. On the other hand, constraining the duplex with the interstrand cross-link of transplatin results in a significant increase in thermal stability that is primarily due to entropic effects: the cross-link reduces the molecularity of the oligomer system from bimolecular to monomolecular. Importantly, the position of the interstrand cross-link within the duplex modulates cooperativity of the melting transition of the duplex and consequently its thermal stability.  相似文献   

14.
The thermodynamic and kinetic results for the helix formation of the oligonucleotides, GACCGUCA and UGUCGGUC, which correspond to the sequence of the P3 region in Tetrahymena ribozyme are reported. The kinetic result suggested that the melting mechanism of the duplex of the oligonucleotides consisted of at least two steps because of a UU mismatch.  相似文献   

15.
The ribonucleic acids (RNA) form highly folded structures, which behind the helical fragments contain several secondary and tertiary structural motives. All of them have an influence on thermodynamic stability of the RNA. The 5'- and 3'-dangling ends are one of those structural motives, which effect stability of the adjacent helixes. In this paper, we described the influence of 14 different modified nucleotides, placed as 3'-dangling ends, on thermal stability of the RNA duplexes. Collected data demonstrate that: (i) 5-substituents of the uridine have an impact on the 3'-dangling end effect and the largest changes were observed for 5-chloro, bromo and methyl substituents; (ii) position of the methyl group within the uracil residue affect the thermal stability of the duplex; (iii) increasing a size of the heterocycle base placed as the 3'-terminal unpaired nucleotide enhances stabilization of duplexes.  相似文献   

16.
A microchip method has been developed for massive and parallel thermodynamic analyses of DNA duplexes. Fluorescently labeled oligonucleotides were hybridized with oligonucleotides immobilized in the 100 x 100 x 20 mum gel pads of the microchips. The equilibrium melting curves for all microchip duplexes were measured in real time in parallel for all microchip duplexes. Thermodynamic data for perfect and mismatched duplexes that were obtained using the microchip method directly correlated with data obtained in solution. Fluorescent labels or longer linkers between the gel and the oligonucleotides appeared to have no significant effect on duplex stability. Extending the immobilized oligonucleotides with a four-base mixture from the 3'-end or one or two universal bases (5-nitroindole) from the 3'- and/or 5'-end increased the stabilities of their duplexes. These extensions were applied to increase the stabilities of the duplexes formed with short oligonucleotides in microchips, to significantly lessen the differences in melting curves of the AT- and GC-rich duplexes, and to improve discrimination of perfect duplexes from those containing poorly recognized terminal mismatches. This study explored a way to increase the efficiency of sequencing by hybridization on oligonucleotide microchips.  相似文献   

17.
The expansion of trinucleotide repeat (TNR) DNA has been linked to several neurodegenerative diseases (McMurray, 2010). The number of repeats is usually a characteristic indication of the severity of TNR-related diseases, with longer repeats giving higher propensity to expand and earlier onset of symptoms (López, Cleary, & Pearson, 2010). It is generally accepted that formation of noncanonical secondary structures, such as stem-loop hairpins or slipouts, contributes to the expansion mechanisms during aberrant DNA replication or repair processes (Mirkin, 2007). The stability of these hairpins is considered an important factor (Paiva & Sheardy, 2005). In this work, we used differential scanning calorimetry (DSC) and UV–Vis spectroscopy to study the thermodynamic and kinetic stability of a series of (CTG)n and (CAG)n TNR stem-loop hairpins and their corresponding (CTG)n/(CAG)n duplexes (n?=?6–14). We found that hairpins with n?=?even and n?=?even?+?1 (odd) repeats possess very similar thermodynamic stability. But, when converting to the canonical duplex form, odd-repeat hairpins are more stabilized compared to those of their even-repeat counterparts. Within both even- and odd-repeat series, hairpins with longer repeats are thermodynamically more stabilized compared to the shorter ones. Kinetic experiments of the stem-loop hairpin to duplex conversion revealed a longer lifetime for the even-repeat hairpins, while the odd-repeat hairpins convert to duplexes 10-fold faster. Also, hairpins with increased number of repeats are more resistant to the conversion when considered within the even- or odd-repeat series individually. Taken together, although it is thermodynamically more favored that hairpins containing longer repeats convert to canonical duplex form; On the contrary, these longer hairpins are kinetically trapped during the conversion and therefore can persist the noncanonical structures, which allows TNR expansion.  相似文献   

18.
Binding of short fluorescently labeled AT-containing DNA duplexes with modified oligocytidylates is studied. The latter are modified to contain unnatural alpha-anomers along with natural beta-nucleotides; the nucleotide composition is selected according to putative pattern of unconventional triplex formation between duplex and oligomer bases. Nondenaturing gel electrophoresis is used to study complexation of fluorescent duplexes with cytidyl oligomers and oligocytidylate self-association at low temperatures. A DNA duplex of random AT composition is shown to bind with an excess of the corresponding oligocytidylate in 0.1 M Tris-HCl in the presence of Mg2+. Binding is observed at neutral pH values, while more basic pH (8.0) prevents complexation of the AT duplex and oligocytidylate. Contrary to oligonucleotides of irregular composition, a regular dA30:dT30 duplex does not bind with the dC strand. It is also shown that alternating self-complementary duplex d(AT)16 and oligocytidylate d(CbetaCalpha)15 do not form complexes, and poly-dC self-associates are formed instead. The effect of 2'-O-methylation of the third strand on complex formation and self-association is also analyzed. The results suggest that a modified oligocytidylate binds with a random-composition duplex, albeit with lower efficiency.  相似文献   

19.
Eukaryotic initiation factor (eIF) 4A is the prototypic member of the DEAD box family of proteins and has been proposed to act as an RNA helicase to unwind secondary structure in the 5'-untranslated region of eukaryotic mRNAs. Previous studies have shown that the RNA helicase activity of eIF4A is dependent on the presence of a second initiation factor, eIF4B. In this report, eIF4A has been demonstrated to function independently of eIF4B as an ATP-dependent RNA helicase. The biochemical and kinetic properties of this activity were examined. By using a family of RNA duplexes with an unstructured single-stranded region followed by a duplex region of increasing length and stability, it was observed that the initial rate of duplex unwinding decreased with increasing stability of the duplex. Furthermore, the maximum amount of duplex unwound also decreased with increasing stability. Results suggest that eIF4A acts in a non-processive manner. eIF4B and eIF4H were shown to stimulate the helicase activity of eIF4A, allowing eIF4A to unwind longer, more stable duplexes with both an increase in initial rate and maximum amount of duplex unwound. A simple kinetic model is proposed to explain the mechanism by which eIF4A unwinds RNA duplex structures in an ATP-dependent manner.  相似文献   

20.
Nucleic acid oligonucleotides are widely used in hybridization experiments for specific detection of complementary nucleic acid sequences. For design and application of oligonucleotides, an understanding of their thermodynamic properties is essential. Recently, exciton-controlled hybridization-sensitive fluorescent oligonucleotides (ECHOs) were developed as uniquely labeled DNA oligomers containing commonly one thymidine having two covalently linked thiazole orange dye moieties. The fluorescent signal of an ECHO is strictly hybridization-controlled, where the dye moieties have to intercalate into double-stranded DNA for signal generation. Here we analyzed the hybridization thermodynamics of ECHO/DNA duplexes, and thermodynamic parameters were obtained from melting curves of 64 ECHO/DNA duplexes measured by ultraviolet absorbance and fluorescence. Both methods demonstrated a substantial increase in duplex stability (ΔΔG°(37) ~ -2.6 ± 0.7 kcal mol(-1)) compared to that of DNA/DNA duplexes of the same sequence. With the exception of T·G mismatches, this increased stability was mostly unaffected by other mismatches in the position opposite the labeled nucleotide. A nearest neighbor model was constructed for predicting thermodynamic parameters for duplex stability. Evaluation of the nearest neighbor parameters by cross validation tests showed higher predictive reliability for the fluorescence-based than the absorbance-based parameters. Using our experimental data, a tool for predicting the thermodynamics of formation of ECHO/DNA duplexes was developed that is freely available at http://genome.gsc.riken.jp/echo/thermodynamics/ . It provides reliable thermodynamic data for using the unique features of ECHOs in fluorescence-based experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号