首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The snouts of rats were placed in a 60-Hz electric field at an unperturbed field strength of 50 kV/m. A count of the number of vibrissae that moved in the field was made on a series of rats over a number of days where the laboratory humidity varied from 25% to 48%. The number observed to vibrate fell from nine to zero or one at relative humidities between 25% and 39%, respectively.  相似文献   

2.
Previous studies have raised the possibility of reproductive and developmental changes in miniature swine chronically exposed to a strong 60-Hz electric field. Two replicate experiments on rats were performed to determine if similar changes could be detected in animals exposed under a comparable regime, which was based on average, induced-current densities and on the chronology of reproductive development, as dosimetrically and biologically scaled. Beginning at three months of age, female rats of the F0 generation and their subsequent offspring were chronically exposed to a 60-Hz electric field (100 kV/m unperturbed) for 19 h/day for the duration of experimentation. After four weeks of exposure, F0 female rats were mated to unexposed male rats during the field-off period. No significant developmental effects were detected in their litters, confirming our previous results with swine and rats. The F0 females were mated for a second time at 7.2 months of age, and the fetuses were evaluated shortly before term. In the first experiments, the incidence of intrauterine mortality was significantly less in exposed than in sham-exposed litters, and there was a tendency (P = .12) for an increased incidence of malformed fetuses in exposed litters. Neither end point was significantly affected in the second experiment. Copulatory behavior of the female F1 offspring, which were bred at three months of age, was not affected in either experiment. There was a statistically significant decrease in the fertility of F1 exposed females and a significant increase in the fraction of exposed litters with malformed fetuses in the first experiment; both end points were essentially the same in the sham and exposed groups of the second experiment. That the significant effects detected in the first experiment were not seen in the second may be attributed to random or biological variation. Alternatively, the finding may indicate that the response threshold for induction of malformations lies near 100 kV/m.  相似文献   

3.
Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposure cell is a section of X-band waveguide that was modified by the addition of a center conductor to form a small TEM cell within the waveguide structure. The ELF signal is applied to the center conductor of the TEM cell. The applied ELF electric field generates an electrostrictive force on the surface of the brain tissue. This force causes the tissue to vibrate at a frequency equal to twice the frequency of the applied sinusoidal signal. An X-band signal is fed through the waveguide, scattered by the vibrating sample, and detected by a phase-sensitive receiver. Using a time-averaging spectrum analyzer, a vibration sensitivity of approximately 0.2 nmp-p can be achieved. The amplitude of the brain tissue vibrational response is constant for vibrational frequencies below 50 Hz; between 50 and 200 Hz resonant phenomena were observed; and above 200 Hz the amplitude fall-off is rapid.  相似文献   

4.
This study was designed to assess the effect of exposure to long-term extremely low-frequency electric and magnetic fields (ELF-EMF) from a 500 kV transmission line on IL-1 and IL-2 activity in sheep. The primary hypothesis was that the reduction in IL-1 activity observed in our two previous short-term studies (10 months) was due to EMF exposure from this transmission line. To repeat and expand these studies and to characterize the components of EMF responsible for the previously observed reduction in IL-1 activity, the current experiment examined not only the effect of exposure to electric and magnetic fields, but also the magnetic field component alone. In the current study, IL-2 was examined to characterize the effects of EMF exposure on an indicator of T cell responses. 45 Suffolk ewe lambs were randomized into three groups of 15 animals each. One group of animals was placed in the EMF pen, located directly beneath the transmission line. A second group was placed in the shielded MF (magnetic field only) pen, also directly beneath the transmission line. The third group of animals was placed in the control pen located several hundred meters away from the transmission line. During the 27 month exposure period, blood samples were taken from all animals monthly. When the data were analyzed collectively over time, no significant differences between the groups were found for IL-1 or IL-2 activity. In previous studies ewe lambs of 8-10 weeks of age were used as the study animals and significant differences in IL-1 activity were observed after exposure of these animals to EMF at mean magnetic fields of 3.5-3.8 microT (35-38 mG) and mean electric fields of 5.2-5.8 kV/m. At the start of the current study EMF levels were reduced as compared to previous studies. One interpretation of the current data is that magnetic field strength and age of the animals may be important variables in determining whether EMF exposure will affect IL-1 activity.  相似文献   

5.
The threshold intensity for detection of an AC electric field was studied in human subjects at several different temperatures and humidities. The dorsum and palm of the hand were exposed to fields, representing hairy and hairless skin, in order to clarify whether hair movement is critical for field detection. Experiments were carried out on human subjects (seven men and four women) during hot humid weather of July–August and dry cool air of October–November. Threshold values obtained in the summer were 30–65 kV/m for the hairy skin on the dorsum of the hand, while for the hairless skin on the palm the threshold was > 115 kV/m (highest field available due to limitations of the power supply). During the fall, the threshold was much higher than during the summer. We sought possible reasons for the difference and found that humidity was the main factor. Relative permittivity of woman's hair was then estimated by measuring capacitance of the hairs under dry (35% RH) and wet (85% RH) conditions at 20 °C. The values of relative permittivity obtained under these two conditions differed by several times the average. The differences in detection thresholds may be attributable to the different relative permittivities of the hairs under dry and wet conditions.  相似文献   

6.
7.
60-Hz electric fields: detection by female rats   总被引:1,自引:0,他引:1  
Female rats were trained to detect a vertical, 60-Hz electric field using the same apparatus and procedure we used previously to study behavioral detection of the field by male rats. Each rat was trained individually to press a lever in the presence of the field and not to press in its absence. Correct detections occasionally produced a food pellet. The probability of detecting the field increased as field strength increased. The threshold of detection--ie, the field strength required for detections at a probability of 0.5 after correction for errors--varied among rats between 3 and 10 kV/m. Behavioral detection by female rats was indistinguishable from that by male rats.  相似文献   

8.
Equipment designed for simultaneous exposure of rodents to 60-Hz electric and magnetic fields is described. Three identical systems were constructed, each capable of continuous exposure of 256 rats or 640 mice to a nominal electric field at less than 50 kV/m, and to horizontal and vertical magnetic fields at less than 1 mT. Design features, construction details, and results of various tests of the systems are described. Tests were made: of phase relations between electric and magnetic fields; of uniformity of electric and magnetic fields; of changes across time in electric-field intensity as a result of animals' soiling of cages and various washing routines; of resistance of bedding material during humid and dry conditions; and of acoustic noise due to background, to field-generation equipment, and to air conditioning equipment. The results demonstrated that fields were effectively generated but that significant and troublesome changes in electric-field intensity occurred because of cage-soiling. However, when cages were frequently cleaned, field intensities were consistent from one exposure to another.  相似文献   

9.
Two independent series of experiments were performed on 114 male Sprague-Dawley derived, albino rat pups, which represented 61 litters in experimental series I and 53 litters in experimental series II. Animals were exposed for 20 h/day from conception to testing (postnatal days 11–20) to a vertical, 65-kV/m, 60-Hz electric field or sham-exposed. Recordings of the visual-evoked response (VER) were obtained using a small silver ball electrode placed epidurally over the visual cortex. Visual stimuli consisted of 10-μS light flashes delivered at 0.2 Hz. Computer-averaged VERs were obtained and power spectral analyses (fast Fourier transform) were performed on the tapered (split cosine-bell window), averaged VERs. The expected age-related changes were clearly evident; however, a detailed analysis of VER component latencies, peak-to-peak amplitude, and power spectra failed to reveal any consistent, statistically significant effect of exposure to 60-Hz electric fields.  相似文献   

10.
Ramirez et al (1983) reported reduced egg laying by Drosophila melanogaster and reduced survival of those eggs to adulthood when adult flies were exposed to magnetic fields. In a similar study, no effects from exposures of Drosophila to 1-mT, 60-Hz magnetic fields were found.  相似文献   

11.
60-Hz electric and magnetic fields generated by a distribution network   总被引:1,自引:0,他引:1  
From a mobile unit, 60-Hz electric and magnetic fields generated by Hydro-Québec's distribution network were measured. Nine runs, representative of various human environments, were investigated. Typical values were 32 V/m and 0.16 microT. The electrical distribution networks investigated were major contributors to the electric and magnetic environments.  相似文献   

12.
A model has been developed that permits assessment of residential exposure to 60-Hz magnetic fields emitted by appliances. It is based on volume- and time-averaging of magnetic-dipole fields. The model enables the contribution of appliances in the total residential exposure to be compared with that of other sources in any residence under study. Calculations based on measurements reported in the literature on 98 appliances revealed that appliances are not a significant source of whole-body exposure, but that they may be the dominant source of exposure of the body's extremities.  相似文献   

13.
Adult male rats were exposed or sham-exposed to 60-Hz electric fields without spark discharges, ozone, or significant levels of other secondary variables. No effects were observed on body weights or plasma hormone levels after 30 days of exposure at an effective field strength of 68 kV/m. After 120 days of exposure (effective field strength = 64 kV/m), effects were inconsistent, with significant reductions in body weight and plasma levels of follicle-stimulating hormone and corticosterone occurring in one replicate experiment but not in the other. Plasma testosterone levels were significantly reduced after 120 days of exposure in one experiment, with a similar but not statistically significant reduction in a replicate experiment. Weanling rats, exposed or sham-exposed in electric fields with an effective field strength of 80 kV/m from 20 to 56 days of age, exhibited identical or closely similar growth trends in body and organ weights. Hormone levels in exposed and sham-exposed groups were also similar. However, there was an apparent phase shift between the two groups in the cyclic variations of concentrations of hormones at different stages of development, particularly with respect to follicle-stimulating hormone and corticosterone. We concluded that 60-Hz electric fields may bring about subtle changes in the endocrine system of rats, and that these changes may be related to alterations in episodic rhythms.  相似文献   

14.
Recently, it has been reported that exposure to high-strength electric fields can influence electrocardiogram (ECG) patterns, heart rates, and blood pressures in various species of animals. Our studies were designed to evaluate these reported effects and to help clarify some of the disagreement present in the literature. Various cardiovascular variables were measured in Sprague-Dawley rats exposed or sham-exposed to 60-Hz electric fields at 80 or 100 kV/m for periods up to four months. No significant differences in heart rates, ECG patterns, blood pressures, or vascular reactivity were observed between exposed and sham-exposed rats after 8 hours, 40 hours, 1 month, or 4 months of exposure. Blood pressure and heart rate measurements, made during exposure to a 100-kV/m electric field for one hour, revealed no significant differences between exposed and sham-exposed groups. In addition, physiologic reserve capacity, measured in rats subjected to low temperature after exposure to 100 kV/m for one month, showed that electric-field exposure had no significant effect on physiological response to cold stress. Our studies cannot be directly compared to the work of other investigators because of differences in animal species and electric-field characteristics. However, our failure to detect any cardiovascular changes may have been the result of 1) eliminating secondary field effects such as shocks, audible noise, corona, and ozone; 2) minimizing steady-state microcurrents between the mouth of the animal and watering devices; and 3) minimizing electric-field-induced vibration of the electrodes and animal cages.  相似文献   

15.
The effects of 50-, 30-, and 15-Hz electric field exposure on the activity of spontaneously firing neurons in the brain of anaesthetized rats were studied. Exposure to fields of 100 V/m (peak-to-peak, in air) produced no effect on the overall rate of neuronal firing, but some synchronicity with the period of the exposure waveform was seen with 15- and 30-Hz electric fields.  相似文献   

16.
There have been a number of reports in the literature concerning growth-related changes in various animal species exposed to high-strength electric fields. Many of the laboratories reporting such effects have not documented and controlled for the secondary factors that are associated with generating high-strength electric fields (ie, corona, ozone, harmonic distortion, cage vibration, spark discharge). We have designed an exposure system in which we eliminated or minimized these secondary factors, therefore enabling us to examine only the effects of electric fields per se. Sprague-Dawley rats and Swiss-Webster mice were exposed to 60-Hz electric fields at kV/m for up to four months. In 17 individual experiments, we found a greater number of experiments in which the exposed rats had lower body weights than controls. This trend was not evident in data obtained from 14 individual mouse experiments. In more exhaustive growth studies, we found no significant differences in body weights, organ weights, or O2 consumption between exposed and sham-exposed controls. Our failure to detect any major changes in growth was probably the result of eliminating or minimizing the secondary factors associated with electric field exposure.  相似文献   

17.
This study was designed to assess the neuroendocrine response of male Long-Evans rats to sustained or intermittent 60-Hz electric fields when exposed for 1 or 3 h at 100 kV/m. No significant differences were noted in corticosterone, prolactin, or thyrotropin levels between exposed and sham-exposed rats. A statistically significant increase (P less than .01) in growth hormone was noted in rats exposed to intermittent electric fields for 3 h. Emphasis was placed on good experimental design and the need to avoid standard laboratory stressors (excessive handling, temperature extremes, transportation, noise, etc.) known to be present in many biomedical studies. The importance of avoiding reactions due to extraneous factors in experiments predicated on investigating physiological function in relation to electric field exposure is discussed.  相似文献   

18.
Evaluations of reproductive and developmental toxicology, including teratology, were included as part of a broad screening study in Hanford Miniature swine (HMS) to detect effects of exposure to electric fields. One group (E) was exposed to a uniform, vertical, 60-Hz, 30-kV/m electric field for 20 h/day, 7 days/week; sham-exposed (SE) swine were housed in a separate, environmentally equivalent building. The first generation (F0) gilts were bred after 4 months of study; some were killed for teratologic assays at 100 days of gestation (dg), and the others produced an F1 generation of offspring. The pooled incidence of terata in these litters (teratologic assays and live births) was similar in the E and SE groups. The F0 females, which produced the F1 generation, were bred again after 18 months of exposure and were killed at 100 dg. Malformation incidence in E litters (75%) was significantly greater than in SE litters (29%). No consistent differences in litter size, fetal mass, or mass of fetal organs were detected. The F1 gilts were bred at 18 months of age; defective offspring were found in significantly more of the E litters (71%) than in SE litters (33%). These F1 females were bred again 10 months later and teratologic assays were performed on their second litters at 100 dg. The percentage of litters with malformed fetuses was essentially identical in the E and SE groups (70% and 73%, respectively). There appears to be an association between chronic exposure to a strong electric field and developmental effects in swine, although the change in incidence of malformations between generations and between the first and second breedings makes it impossible to conclude unequivocally that there is a cause-and-effect relation.  相似文献   

19.
A significant 25% inhibition (P less than .005) of allogeneic cytotoxicity of the target cell MPC-11 by the murine cytotoxic T-lymphocyte line CTLL-1 was observed when the 4-h cytotoxicity assay was conducted immediately following a 48-h pre-exposure of the effector lymphocytes to a 10-mV/cm (rms) 60-Hz sinusoidal electric field. At 1.0 mV/cm a significant 19% inhibition (P less than .0005) was seen. At 0.1 mV/cm a nonsignificant 7% inhibition of cytotoxicity was noted. When the 4-h cytotoxicity assay was conducted in the presence of the field using previously unexposed effector lymphocytes, cytotoxicity was not significantly reduced. Cell proliferation in the presence of interleukin-2 was unaffected by the field. These data suggest a dose response and threshold (between 0.1 and 1.0 mV/cm) for inhibition of cytotoxicity in clonal T-lymphocytes by exposure to a 60-Hz sinusoidal electric field. These results suggest mechanisms by which 60-Hz electric fields could affect the function of cells of the immune system.  相似文献   

20.
A numerical model of a human body with an intramedullary nail in the femur was built to evaluate the effects of the implant on the current density distribution in extremely low frequency electric and magnetic fields. The intramedullary nail was chosen because it is one of the longest high conductive implants used in the human body. As such it is expected to alter the electric and magnetic fields significantly. The exposure was a simultaneous combination of inferior to superior electric field and posterior to anterior magnetic field both alternating at 50 Hz with the values corresponding to the ICNIRP reference levels: 5000 V m?1 for electric field and 100 µT for magnetic flux density. The calculated current density distribution inside the model was compared to the ICNIRP basic restrictions for general public (2 mA m?2). The results show that the implant significantly increases the current density up to 9.5 mA m?2 in the region where it is in contact with soft tissue in the model with the implant in comparison to 0.9 mA m?2 in the model without the implant. As demonstrated the ICNIRP basic restrictions are exceeded in a limited volume of the tissue in spite of the compliance with the ICNIRP reference levels for general public, meaning that the existing safety limits do not necessarily protect implanted persons to the same extent as they protect people without implants. Bioelectromagnetics 30:591–599, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号