首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Direct Observation of Microbial Inhibition of Calcite Dissolution   总被引:3,自引:0,他引:3       下载免费PDF全文
Vertical scanning interferometry (VSI) provides a method for quantification of surface topography at the angstrom to nanometer level. Time-dependent VSI measurements can be used to study the surface-normal retreat across crystal and other solid surfaces during dissolution or corrosion processes. Therefore, VSI can be used to directly and nondestructively measure mineral dissolution rates with high precision. We have used this method to compare the abiotic dissolution behavior of a representative calcite (CaCO3) cleavage face with that observed upon addition of an environmental microbe, Shewanella oneidensis MR-1, to the crystal surface. From our direct observations, we have concluded that the presence of the microbes results in a significant inhibition of the rate of calcite dissolution. This inhibition appears to be a 2nd-order effect that is related to the formation of etch pits. The opening of etch pits was greatly inhibited in the presence of added bacteria, suggesting that the bacterial cells exert their effect by inhibiting the formation of etch pits at high-energy sites at the crystal surface caused by lattice defects, e.g., screw or point dislocations. The experimental methodology thus provides a nondestructive, directly quantifiable, and easily visualized view of the interactions of microbes and minerals during weathering (or corrosion) processes or during mineral precipitation.  相似文献   

2.
Carbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.Subject terms: Microbial ecology, Water microbiology, Biogeochemistry, Biogeochemistry, Biofilms  相似文献   

3.
Growth and attachment rates of Thermothrix thiopara on calcite and pyrite were quantitated in a thiosulfate‐limited chemostat and in the thermal spring where the organism is found in nature. Surface growth rates were quantitated by using the surface colonization and exponential growth equations. These two models were compared as means of determining surface growth rates. In the chemostat, T. thiopara cells colonizing calcite and pyrite surfaces grew at approximately one‐third the rate of suspended cells. However, T. thiopara attached to pyrite faster than to calcite. In the thermal spring, growth and attachment rates were equal on calcite and pyrite. It was concluded that the exponential growth equation overestimates in‐situ surface growth rates and that T. thiopara grows more slowly when colonizing mineral surfaces than when growing in suspension. Lower growth rates on surfaces may be due to a reduced cell surface area for nutrient uptake or an increased specific maintenance rate.  相似文献   

4.
Z. Zeng  M. M. Tice 《Geobiology》2014,12(4):362-371
Iron‐bearing early diagenetic carbonate cements are common in sedimentary rocks, where they are thought to be associated with microbial iron reduction. However, little is yet known about how local environments around actively iron‐reducing cells affect carbonate mineral precipitation rates and compositions. Precipitation experiments with the iron‐reducing bacterium Shewanella oneidensis MR‐1 were conducted to examine the potential role of cells in promoting precipitation and to explore the possible range of precipitate compositions generated in varying fluid compositions. Actively iron‐reducing cells induced increased carbonate mineral saturation and nucleated precipitation on their poles. However, precipitation only occurred when calcium was present in solution, suggesting that cell surfaces lowered local ferrous iron concentrations by adsorption or intracellular iron oxide precipitation even as they locally raised pH. Resultant precipitates were a range of thermodynamically unstable calcium‐rich siderites that would likely act as precursors to siderite, calcite, or even dolomite in nature. By modifying local pH, providing nucleation sites, and altering metal ion concentrations around cell surfaces, iron‐reducing micro‐organisms could produce a wide range of carbonate cements in natural sediments.  相似文献   

5.
Vertical scanning interferometry (VSI) provides a method for quantification of surface topography at the angstrom to nanometer level. Time-dependent VSI measurements can be used to study the surface-normal retreat across crystal and other solid surfaces during dissolution or corrosion processes. Therefore, VSI can be used to directly and nondestructively measure mineral dissolution rates with high precision. We have used this method to compare the abiotic dissolution behavior of a representative calcite (CaCO(3)) cleavage face with that observed upon addition of an environmental microbe, Shewanella oneidensis MR-1, to the crystal surface. From our direct observations, we have concluded that the presence of the microbes results in a significant inhibition of the rate of calcite dissolution. This inhibition appears to be a 2nd-order effect that is related to the formation of etch pits. The opening of etch pits was greatly inhibited in the presence of added bacteria, suggesting that the bacterial cells exert their effect by inhibiting the formation of etch pits at high-energy sites at the crystal surface caused by lattice defects, e.g., screw or point dislocations. The experimental methodology thus provides a nondestructive, directly quantifiable, and easily visualized view of the interactions of microbes and minerals during weathering (or corrosion) processes or during mineral precipitation.  相似文献   

6.
Microbial aerobic methane oxidation (MOx) is intrinsically coupled to the production of carbon dioxide, favoring carbonate dissolution. Recently, microbial organic polymers were shown to be able to induce carbonate dissolution. To discriminate between different mechanisms causing calcite dissolution, experiments were conducted in the presence of solid calcite with (1) actively growing cells (2) starving cells, and (3) dead cells of the methanotrophic bacterium Methylosinus trichosporium under brackish conditions (salinity 10) near calcite saturation (saturation state (Ω) 1.76 to 2.22). Total alkalinity and the amount of dissolved calcium markedly increased in all experiments containing M. trichosporium cells. After initial system equilibration, similar calcite dissolution rates, ranging between 20.16 (dead cells) and 25.68 μmol L?1 d?1 (actively growing cells), were observed. Although concentrations of transparent exopolymer particles declined with time in the presence of actively growing and starving cells, they increased in experiments with dead cells. Scanning electron microscopy images of calcite crystals revealed visible surface corrosion after exposure to live and dead M. trichosporium cells. The results of this study indicate a strong potential for microbial MOx to affect calcite stability negatively, facilitating calcite dissolution. In addition to CO2 production by methanotrophically active cells, we suggest that the release of acidic or Ca2+-chelating organic carbon compounds from dead cells could also enhance calcite dissolution.  相似文献   

7.

Field observations suggest that some mineral dissolution rates can be enhanced by microbial activity indirectly, without direct contact with the mineral surface. A series of apatite dissolution experiments was performed to better understand this rate enhancement process. Far-from equilibrium abiotic apatite dissolution rates, measured in mixed-flow reactors at 25°C were enhanced by increasing concentration of aqueous organic acids and decreasing aqueous phosphate activity, demonstrating the existence of indirect pathways for microbial rate enhancement. Further apatite dissolution experiments were performed in closed-system reactors in the presence of Bacillus megaterium , a common heterotrophic aerobe. Experiments were designed to allow the bacteria to be either in direct contact or indirect contact with the apatite; in the latter case, the microbes were physically separated from the apatite using dialysis bags. Apatite dissolution in indirect contact with Bacillus megaterium was 50 to 900% faster than abiotic controls. Bacterial rate enhancement was, however, 3 to over 10 times lower when Bacillus megaterium was in direct contract versus indirect contact with the apatite surfaces. These results show that (1) bacteria can accelerate rates without being in physical contact with the dissolving mineral, and (2) microbially mediated dissolution may be less effective when bacteria are in direct contact with mineral surfaces. Supression of mineral dissolution is interpreted to stem from the preferential colonization of reactive sites on the mineral surface.  相似文献   

8.
In this study, we demonstrate that sulphate‐reducing bacteria induce anoxic low‐temperature Ca‐dolomite formation both in situ in Lagoa Vermelha and Brejo do Espinho, two neighbouring, dolomite‐precipitating hypersaline lagoons in Brazil, and in laboratory culture experiments. The metabolic activity of sulphate‐reducing bacteria facilitates dolomite formation under anoxic conditions, as demonstrated with experiments using dialysis bags. Overall changes in the chemical conditions of the medium exclusively, without the presence of bacteria, did not result in carbonate precipitation. Only pure cultures of metabolizing sulphate‐reducing bacteria induced Ca‐dolomite and high Mg‐calcite precipitates, indicating that the carbonate nucleation takes place in the locally changed microenvironment around the sulphate‐reducing bacterial cells. Not all pure strains, however, produced Ca‐dolomite under similar conditions, suggesting that the bacterial metabolism, activity and the rate of mineral precipitation have an influence on the type of carbonate formed.  相似文献   

9.
The Sava River and its tributaries in Slovenia represent waters strongly influenced by chemical weathering of limestone and dolomite. The carbon isotopic compositions of dissolved inorganic carbon (DIC) and suspended organic carbon (POC) fractions as well as major solute concentrations yielded insights into the origin and fluxes of carbon in the upper Sava River system. The major solute composition was dominated by carbonic acid dissolution of calcite and dolomite. Waters were generally supersaturated with respect to calcite, and dissolved CO2 was about fivefold supersaturated relative to the atmosphere. The δ13C of DIC ranged from −13.5 to −3.3‰. Mass balances for riverine inorganic carbon suggest that carbonate dissolution contributes up to 26%, degradation of organic matter ∼17% and exchange with atmospheric CO2 up to 5%. The concentration and stable isotope diffusion models indicated that atmospheric exchange of CO2 predominates in streams draining impermeable shales and clays while in the carbonate-dominated watersheds dissolution of the Mesozoic carbonates predominates.  相似文献   

10.
11.
The microbial role in the formation of the cortex of low‐Mg calcite freshwater ooids in western part of Lake Geneva in Switzerland has been suggested previously, but not demonstrated conclusively. Early work mostly concentrated in hypersaline milieus, and hence little is known about their genesis in freshwater environments. We designed an in situ experiment to mimic the natural process of low‐Mg calcite precipitation. A special device was placed in the ooid‐rich bank of the lake. It contained frosted glass (SiO2) slides, while quartz (SiO2) is the most abundant mineral composition of ooid nuclei that acted as artificial substrates to favour microbial colonization. Microscopic inspection of the slides revealed a clear seasonal pattern of carbonate precipitates, which were always closely associated with biofilms that developed on the surface of the frosted slides containing extracellular polymeric substance, coccoid and filamentous cyanobacteria, diatoms and heterotrophic bacteria. Carbonate precipitation peaks during early spring and late summer, and low‐Mg calcite crystals mostly occur in close association with filamentous and coccoid cyanobacteria (e.g. Tolypothrix, Oscillatoria and Synechococcus, Anacystis, respectively). Further scanning electron microscope inspection of the samples revealed low‐Mg calcite with crystal forms varying from anhedral to euhedral rhombohedra, depending on the seasons. Liquid cultures corroborate the in situ observations and demonstrate that under the same physicochemical conditions the absence of biofilms prevents the precipitation of low‐Mg calcite crystals. These results illustrate that biofilms play a substantial role in low‐Mg calcite ooid cortex formation. It further demonstrates the involvement of microbes in the early stages of ooid development. Combined with ongoing microbial cultures under laboratory‐controlled conditions, the outcome of our investigation favoured the hypothesis of external microbial precipitation of low‐Mg calcite as the main mechanism involved in the early stage of ooid formation in freshwater Lake Geneva.  相似文献   

12.
Silicate minerals represent an important reservoir of nutrients at Earth's surface and a source of alkalinity that modulates long‐term geochemical cycles. Due to the slow kinetics of primary silicate mineral dissolution and the potential for nutrient immobilization by secondary mineral precipitation, the bioavailability of many silicate‐bound nutrients may be limited by the ability of micro‐organisms to actively scavenge these nutrients via redox alteration and/or organic ligand production. In this study, we use targeted laboratory experiments with olivine and the siderophore deferoxamine B to explore how microbial ligands affect nutrient (Fe) release and the overall rate of mineral dissolution. Our results show that olivine dissolution rates are accelerated in the presence of micromolar concentrations of deferoxamine B. Based on the non‐linear decrease in rates with time and formation of a Fe3+‐ligand complex, we attribute this acceleration in dissolution rates to the removal of an oxidized surface coating that forms during the dissolution of olivine at circum‐neutral pH in the presence of O2 and the absence of organic ligands. While increases in dissolution rates are observed with micromolar concentrations of siderophores, it remains unclear whether such conditions could be realized in natural environments due to the strong physiological control on microbial siderophore production. So, to contextualize our experimental results, we also developed a feedback model, which considers how microbial physiology and ligand‐promoted mineral dissolution kinetics interact to control the extent of biotic enhancement of dissolution rates expected for different environments. The model predicts that physiological feedbacks severely limit the extent to which dissolution rates may be enhanced by microbial activity, though the rate of physical transport modulates this limitation.  相似文献   

13.
The effects of carbonate concentration and the presence of iron hydroxide phases on the process of arsenic release from an ore material were investigated under experimental oxic conditions and in the pH range from 6.0 to 9.0. These experimental conditions are pertinent to arsenic leaching from tailings and mining wastes. The leaching tests lasted for ≤ 99 days and were performed with materials of five different particle sizes (≤ 2 mm). Carbonate ions were produced in‐situ by dolomite dissolution or were contained in used waters (0 to 30 mM as HCO3). Iron hydroxide phases were formed in situ by oxidative dissolution of metallic iron (Fe0) or pyrite (FeS2). Non‐disturbed batch experiments and air‐homogenized experiments were conducted with a constant amount (10 g/L) of an arsenic‐bearing rock (ore material) of a given particle size and different types of water (deionized, tap and mineral water). For comparison, experiments were conducted with 0.1 M EDTA, 0.1 M Na2CO3, and 0.1 M H2SO4. Neither the use of dolomite nor the use of water containing various carbonate (HCO3) concentrations could confirm the recent results on the favorable role of AsIII‐carbonate complexes on the arsenic transport in the environment. On the other hand, iron hydroxide phases (from Fe0 and FeS2) univocally delayed the As release in both experimental procedures. Furthermore, the theoretically expected effects of the particle size of the ore material was observed. If one takes into consideration that the used HCO3 concentrations were up to six times larger then those of natural surface waters (≤ 5.5 mM) but up to five times lower than those currently used in the literature (≥ 100 mM), it is concluded that the reported conflicting results for As leaching from sediments may be a misinterpretation of processes occurring in the sediment and yielding increased As release with increasing HCO3/CO32– concentration.  相似文献   

14.
Bioleaching of a pyrite ore containing high concentrations of cobalt (0.1%) and zinc (0.065%) was affected by small amounts of calcitic gangue (from 0.01 to 1.01%). Results from an air-lift percolator and from Erlenmeyer flask experiments show that a small percentage of calcite raises the pH and arrests the growth of the acidophilic bacterium Thiobacillus ferrooxidans. In percolator experiments, when calcite is completely removed by the continuous addition of small quantities of acid, and the pH of the liquor becomes acid, the micro-organism begins to grow and to bio-oxidize the pyrite ore. The growth of T. ferrooxidans shows different lag phase spans (from 13 to 190 days) depending on carbonate dissolution. The metals Fe, Zn and Co are released into the leaching solution together at different rates after a lag-time which depends on calcite concentrations in pyrite gangue. Metal ratios in the mineral bulk are different from those in the liquor, Zn dissolving 5 times more readily than Co. Bioleaching rates for metal removal from pyrite are higher in percolator (for Fe, from 5 to 15 mg/l/h) than in flask experiments (from 0.5 to 2 mg/l/h), but the lag phases are shorter (from 2 to 65 days). The differences between the two systems are related to calcite dissolution and gypsum precipitation.F. Baldi is with the Università di Siena, Dipartimento di Biologia Ambientale, via P. A. Mattioli, 4, I-53100 Siena. A. Bralia, F. Riccobono and G. Sabatini are with the Università di Siena, Istituto di Mineralogia I-53100 Siena, Italy.  相似文献   

15.
Red algae of the family Peyssonneliaceae typically form thin crusts impregnated with aragonite. Here, we report the first discovery of brucite in a thick red algal crust (~1 cm) formed by the peyssonnelioid species Polystrata dura from Papua New Guinea. Cells of P. dura were found to be infilled by the magnesium‐rich mineral brucite [Mg(OH)2]; minor amounts of magnesite and calcite were also detected. We propose that cell infill may be associated with the development of thick (> ~5 mm) calcified red algal crusts, integral components of tropical biotic reefs. If brucite infill within the P. dura crust enhances resistance to dissolution similarly to crustose coralline algae that infill with dolomite, then these crusts would be more resilient to future ocean acidification than crusts without infill.  相似文献   

16.
Geochemical environments were characterized for 14 sites along the northern Gulf of Mexico continental shelf and upper slope, in an effort to examine the relationship between sediment geochemistry and carbonate shell taphonomy in a long-term study—Shelf and Slope Experimental Taphonomy Initiative (SSETI). Three groups of environments of preservation (seep, near-seep, and shelf-and-slope) were identified based on their geochemical characteristics (i.e., oxygen uptake rate and penetration depth, pore-water saturation states, and carbonate dissolution fluxes). Diffusive oxygen uptake rate increased in the order of shelf-and-slope, near-seep, and seep, although carbonate dissolution flux did not show significant correlation with O2 flux, presumably due to non-diffusive behavior at some sites. Using pore-water saturation indices with respect to aragonite and calcite and sedimentation rates, we defined a semi-quantitative parameter, carbonate dissolution index (CDI), to predict carbonate preservation potential during the taphonomic processes. Our limited database suggests that both the seep and the shelf-and-slope sediments may have higher carbonate preservation potential than the near-seep sediments.  相似文献   

17.
A process-based mechanistic reactive transport model was developed to understand how in-situ coupled processes and operational factors affect selective plugging of reactive carbonate formations by the fermenting bacteria Leuconostoc mesenteroides that produces a plugging polymer dextran. The growth and transport of L. mesenteroides and the associated (bio) geochemical reactions were simulated explicitly with enzyme activity at the field scale over spatial extents of hundreds of meters. Simulations were performed to explore controls on selective bioplugging of high permeability zones in a representative carbonate reservoir, a process that can be used to improve oil sweep efficiency through lower permeability layers. Simulation results indicate that dextran production and the effectiveness of plugging can be largely affected by sucrose and bacteria injection rates. Selective plugging of high permeability zones can only be achieved when the injection rates are high compared to the rates of dextran production. Otherwise, plugging only occurs at the vicinity of injection wells. Due to the dependence of enzyme activity on pH and the reactive nature of carbonate formations, the chemistry of the injection and the formation water is also important. The injection of sucrose and L. mesenteroides at the optimum pH for dextran production (5.2) leads to the dissolution of calcite and an increase in pH levels. However, the resulting pH does not suppress plugging with dextran. Lactic acid and CO2 formed during the growth of L. mesenteroides buffers the pH of water to levels between 5.2 and 7.0 for continued dextran production. At neutral and basic pH levels, induced precipitation of calcite does not significantly modify the permeability profile at carbonate concentrations typically found in oilfield formation waters. This is the first work that examines the controlling parameters that affect selective plugging of carbonate formations at the field scale within the context of enhanced oil recovery. The demonstrated approach can be used to identify optimal operational conditions for enhanced oil recovery and other applications where selective plugging can be beneficial.  相似文献   

18.
Ocean acidification will disproportionately impact the growth of calcifying organisms in coral reef ecosystems. Simultaneously, sponge bioerosion rates have been shown to increase as seawater pH decreases. We conducted a 20‐week experiment that included a 4‐week acclimation period with a high number of replicate tanks and a fully orthogonal design with two levels of temperature (ambient and +1 °C), three levels of pH (8.1, 7.8, and 7.6), and two levels of boring sponge (Cliona varians, present and absent) to account for differences in sponge attachment and carbonate change for both living and dead coral substrate (Porites furcata). Net coral calcification, net dissolution/bioerosion, coral and sponge survival, sponge attachment, and sponge symbiont health were evaluated. Additionally, we used the empirical data from the experiment to develop a stochastic simulation of carbonate change for small coral clusters (i.e., simulated reefs). Our findings suggest differential impacts of temperature, pH and sponge presence for living and dead corals. Net coral calcification (mg CaCO3 cm?2 day?1) was significantly reduced in treatments with increased temperature (+1 °C) and when sponges were present; acidification had no significant effect on coral calcification. Net dissolution of dead coral was primarily driven by pH, regardless of sponge presence or seawater temperature. A reevaluation of the current paradigm of coral carbonate change under future acidification and warming scenarios should include ecologically relevant timescales, species interactions, and community organization to more accurately predict ecosystem‐level response to future conditions.  相似文献   

19.
Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ωar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ωar∼0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ωar levels slightly above 1 and lower at Ωar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ωar derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ωar levels close to 1, with net shell growth ceasing at an Ωar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean.  相似文献   

20.
We review the use of interatomic potentials to describe the bulk and surface behavior of carbonate materials. Interatomic pair potentials, describing the Ca 2+ -O interactions and the C-O bonding of the CO 3 2 m anion group, are used to evaluate the lattice, elastic, dielectric, and vibrational data for calcite and aragonite. The resulting potential parameters for the carbonate group were then successfully transferred to models of the structures of rhombohedral carbonates of Mn, Fe, Mg, Ni, Zn, Co, and Cd. Simulations of the (10 1 4) cleavage surface of calcite, magnesite, and dolomite show that these surfaces undergo relaxation leading to the rotation and distortion of the carbonate group with associated movement of cations. The influence of water on the surface structure has been investigated for monolayer coverage. The extent of carbonate group distortion is greater for the dry surfaces compared to the hydrated surfaces, and for the dry calcite relative to that for dry dolomite or magnesite. Point defect calculations for the doping of calcite indicate an increase in defect formation energy with increasing size of the substituting divalent ion. Migration energies for Ca, Mg, and Mn in calcite suggest a strong preference for diffusion along pathways roughly parallel to the c -axis rather than along the ab -plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号