共查询到20条相似文献,搜索用时 0 毫秒
1.
The latest version of the classical molecular interaction potential (CMIP) has the ability to predict the position of crystallographic waters in several proteins with great accuracy. This article analyzes the ability of the CMIP functional to improve the setup procedure of the molecular system in molecular dynamics (MD) simulations of proteins. To this end, the CMIP strategy is used to include both water molecules and counterions in different protein systems. The structural details of the configurations sampled from trajectories obtained using the CMIP setup procedure are compared with those obtained from trajectories derived from a standard equilibration process. The results show that standard MD simulations can lead to artifactual results, which are avoided using the CMIP setup procedure. Because the CMIP is easy to implement at a low computational cost, it can be very useful in obtaining reliable MD trajectories. 相似文献
2.
Bandyopadhyaya AK Johnsamuel J Al-Madhoun AS Eriksson S Tjarks W 《Bioorganic & medicinal chemistry》2005,13(5):1681-1689
Thymidine kinase 1 (TK1) is a key target for antiviral and anticancer chemotherapy. Three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques was applied to analyze the phosphorylation capacity of a series of 31 TK1 substrates. The optimal predictive CoMFA model with 26 molecules provided the following values: cross-validated r(2) (q(2))=0.651, non-cross-validated r(2)=0.980, standard error of estimate (s)=0.207, F=129.3. For the optimal CoMSIA model the following values were found: q(2)=0.619, r(2)=0.994, s=0.104, F=372.2. The CoMSIA model includes steric, electrostatic, and hydrogen bond donor fields. The predictive capacity of both models was successfully validated by calculating known phosphorylation rates of five TK1 substrates that were not included in the training set. Contour maps obtained from CoMFA and CoMSIA models correlated with the experimentally developed SAR. 相似文献
3.
4.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) using CoMFA and CoMSIA techniques was applied to evaluate 56 pyrimidine nucleosides as substrates of human thymidine kinase 1 (hTK1), 27 of them containing a carborane substituent either at the 3-, 5-, or 3'-position of the 2'-deoxyuridine scaffold. This is the first report describing 3D-QSAR studies of compounds containing boron atoms. Both CoMFA and CoMSIA models were derived from a training set of 47 molecules and the predictive capacity of the CoMSIA model was successfully validated by accurately calculating known phosphorylation rates of both boronated and non-boron hTK1 substrates that were not included in the training set. The optimal CoMSIA model provided the following values: q(2) 0.622, r(2) 0.983, s 0.165, and F 187.5. Contour maps obtained from the CoMSIA model were in agreement with the experimentally determined biological data. 相似文献
5.
《Journal of molecular graphics》1995,13(1):24-27
Self-organizing maps generated by Kohonen neural networks provide a method for transforming multidimensional problems into lower dimensional problems. Here, a Kohonen network is used to generate two-dimensional representations of the electrostatic potential about the ring structures of histamine H2 agonists. Previous work by J. Gasteiger and X. Li (Angew. Chem. Int. Ed. Engl. 1994, 33, 643) has shown the usefulness of such a method for classifying molecules as muscarinic or nicotinic agonists. Here, the method is extended to rank histamine H2 agonists in order of biological activity. 相似文献
6.
Karlsson R 《Journal of molecular recognition : JMR》2004,17(3):151-161
PubMed searches identified four emerging application areas for surface plasmon resonance systems. Food analysis, proteomics, immunogenicity and drug discovery. These application areas are reviewed. In connection with the review of drug discovery applications a case study is presented. This study demonstrates the value of combining results from drug-target and ADME predictive assays for compound selection. 相似文献
7.
De Rienzo F Gabdoulline RR Menziani MC Wade RC 《Protein science : a publication of the Protein Society》2000,9(8):1439-1454
Blue copper proteins are type-I copper-containing redox proteins whose role is to shuttle electrons from an electron donor to an electron acceptor in bacteria and plants. A large amount of experimental data is available on blue copper proteins; however, their functional characterization is hindered by the complexity of redox processes in biological systems. We describe here the application of a semiquantitative method based on a comparative analysis of molecular interaction fields to gain insights into the recognition properties of blue copper proteins. Molecular electrostatic and hydrophobic potentials were computed and compared for a set of 33 experimentally-determined structures of proteins from seven blue copper subfamilies, and the results were quantified by means of similarity indices. The analysis provides a classification of the blue copper proteins and shows that (I) comparison of the molecular electrostatic potentials provides useful information complementary to that highlighted by sequence analysis; (2) similarities in recognition properties can be detected for proteins belonging to different subfamilies, such as amicyanins and pseudoazurins, that may be isofunctional proteins; (3) dissimilarities in interaction properties, consistent with experimentally different binding specificities, may be observed between proteins belonging to the same subfamily, such as cyanobacterial and eukaryotic plastocyanins; (4) proteins with low sequence identity, such as azurins and pseudoazurins, can have sufficient similarity to bind to similar electron donors and acceptors while having different binding specificity profiles. 相似文献
8.
Background
Protein-protein interaction (PPI) is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS) method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines. 相似文献9.
Lukatsky DB Shakhnovich BE Mintseris J Shakhnovich EI 《Journal of molecular biology》2007,365(5):1596-1606
We study statistical properties of interacting protein-like surfaces and predict two strong, related effects: (i) statistically enhanced self-attraction of proteins; (ii) statistically enhanced attraction of proteins with similar structures. The effects originate in the fact that the probability to find a pattern self-match between two identical, even randomly organized interacting protein surfaces is always higher compared with the probability for a pattern match between two different, promiscuous protein surfaces. This theoretical finding explains statistical prevalence of homodimers in protein-protein interaction networks reported earlier. Further, our findings are confirmed by the analysis of curated database of protein complexes that showed highly statistically significant overrepresentation of dimers formed by structurally similar proteins with highly divergent sequences ("superfamily heterodimers"). We suggest that promiscuous homodimeric interactions pose strong competitive interactions for heterodimers evolved from homodimers. Such evolutionary bottleneck is overcome using the negative design evolutionary pressure applied against promiscuous homodimer formation. This is achieved through the formation of highly specific contacts formed by charged residues as demonstrated both in model and real superfamily heterodimers. 相似文献
10.
Chiang T Li N Orchard S Kerrien S Hermjakob H Gentleman R Huber W 《Bioinformatics (Oxford, England)》2008,24(8):1100-1101
MOTIVATION: The IntAct repository is one of the largest and most widely used databases for the curation and storage of molecular interaction data. These datasets need to be analyzed by computational methods. Software packages in the statistical environment R provide powerful tools for conducting such analyses. RESULTS: We introduce Rintact, a Bioconductor package that allows users to transform PSI-MI XML2.5 interaction data files from IntAct into R graph objects. On these, they can use methods from R and Bioconductor for a variety of tasks: determining cohesive subgraphs, computing summary statistics, fitting mathematical models to the data or rendering graphical layouts. Rintact provides a programmatic interface to the IntAct repository and allows the use of the analytic methods provided by R and Bioconductor. AVAILABILITY: Rintact is freely available at http://bioconductor.org 相似文献
11.
PDZ domains are found in many signaling proteins. One of their functions is to provide scaffolds for forming membrane-associated protein complexes by binding to the carboxyl termini of their partners. PDZ domains are thought also to play a signal transduction role by propagating the information that binding has occurred to remote sites. In this study, a molecular dynamics (MD) simulation-based approach, referred to as an interaction correlation analysis, is applied to the PDZ2 domain to identify the possible signal transduction pathways. A residue correlation matrix is constructed from the interaction energy correlations between all residue pairs obtained from the MD simulations. Two continuous interaction pathways, starting at the ligand binding pocket, are identified by a hierarchical clustering analysis of the residue correlation matrix. One pathway is mainly localized at the N-terminal side of helix alpha1 and the adjacent C-terminus of loop beta1-beta2. The other pathway is perpendicular to the central beta-sheet and extends toward the side of PDZ2 domain opposite to the ligand binding pocket. The results complement previous studies based on multiple sequence analysis, NMR, and MD simulations. Importantly, they reveal the energetic origin of the long-range coupling. The PDZ2 results, as well as the earlier rhodopsin analysis, show that the interaction correlation analysis is a robust approach for determining pathways of intramolecular signal transduction. 相似文献
12.
13.
14.
韦晓兰 《生物化学与生物物理进展》2011,38(4):347-352
借助网络分析可对基因调控、蛋白质互作和信号转导等细胞活动进行全局和局部性质分析.以细胞黏附的蛋白质相互作用为对象,通过数据挖掘和可视化软件构建了整合蛋白介导的黏附分子互作网络,该分子互作网络由156种蛋白质通过690种相互作用相连,其平均节点度为8.66、平均聚集系数为0.24,平均路径长度为2.6.黏附分子互作网络中包含数个功能模块,这些模块涉及网络内部多种分子相互作用的启动与停止,并进一步影响细胞的黏附、迁移和骨架组织.对黏附分子网络进行模体筛选和比较,发现一些数量相对较少、以三元复合物为主要结构的关键模体,同时对各网络模块和模体对细胞黏附的调控作用进行了探讨. 相似文献
15.
Interactions between proteins play a key role in many cellular processes. Studying protein-protein interactions that share similar interaction interfaces may shed light on their evolution and could be helpful in elucidating the mechanisms behind stability and dynamics of the protein complexes. When two complexes share structurally similar subunits, the similarity of the interaction interfaces can be found through a structural superposition of the subunits. However, an accurate detection of similarity between the protein complexes containing subunits of unrelated structure remains an open problem. Here, we present an alignment-free machine learning approach to measure interface similarity. The approach relies on the feature-based representation of protein interfaces and does not depend on the superposition of the interacting subunit pairs. Specifically, we develop an SVM classifier of similar and dissimilar interfaces and derive a feature-based interface similarity measure. Next, the similarity measure is applied to a set of 2,806×2,806 binary complex pairs to build a hierarchical classification of protein-protein interactions. Finally, we explore case studies of similar interfaces from each level of the hierarchy, considering cases when the subunits forming interactions are either homologous or structurally unrelated. The analysis has suggested that the positions of charged residues in the homologous interfaces are not necessarily conserved and may exhibit more complex conservation patterns. 相似文献
16.
17.
18.
We discuss the derivation of atomic-level potentials of mean force from the known protein structures and their applicability for structural evaluation applications. In the derivation process, rigorous density estimation methodology is used to estimate the probability density functions (PDFs) for the distributions of interatomic distances in the protein structures. Potentials of mean force are then derived from these density functions using simple Boltzmann's relation. We also test the potentials against pairs of current and superseded protein structures in the Protein Data Bank. Using PDF potentials to evaluate each structure pair, we are able to identify, with high accuracy, which of the two structures is of higher resolution or better quality. This result shows that the PDF potentials are sensitive to details in protein structures as the current and superseded atomic coordinates generally do not differ by more than 1 A in root-mean-square deviation, and that the PDF potentials could potentially be used for X-ray structure refinement and protein structure prediction. 相似文献
19.
20.
Felipe A. Bulat Alejandro Toro-Labbé Tore Brinck Jane S. Murray Peter Politzer 《Journal of molecular modeling》2010,16(11):1679-1691
We describe a procedure for performing quantitative analyses of fields f(r) on molecular surfaces, including statistical quantities and locating and evaluating their local extrema. Our approach avoids the need for explicit mathematical representation of the surface and can be implemented easily in existing graphical software, as it is based on the very popular representation of a surface as collection of polygons. We discuss applications involving the volumes, surface areas and molecular surface electrostatic potentials, and local ionization energies of a group of 11 molecules. Figure
Calculated electrostatic potential (left) and average local ionization energy (right) on the molecular surface of Tetryl. Yellow and black circles indicate the positions of the local minima and maxima, respectively. 相似文献