首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Canary Islands have proven to be an interesting archipelago for the phylogeographic study of colonization and diversification with a number of recent studies reporting evolutionary patterns and processes across a diversity of floral and faunal groups. The Canary Islands differ from the Hawaiian and Galapagos Islands by their close proximity to a continental land mass, being 110 km from the northwestern coast of Africa. This close proximity to a continent obviously increases the potential for colonization, and it can be expected that at the level of the genus some groups will be the result of more than one colonization. In this study we investigate the phylogeography of a group of carabid beetles from the genus Calathus on the Canary Islands and Madeira, located 450 km to the north of the Canaries and 650 km from the continent. The Calathus are well represented on these islands with a total of 29 species, and on the continent there are many more. Mitochondrial cytochrome oxidase I and II sequence data has been used to identify the phylogenetic relationships among the island species and a selection of continental species. Specific hypotheses of monophyly for the island fauna are tested with parametric bootstrap analysis. Data suggest that the Canary Islands have been colonized three times and Madeira twice. Four of these colonizations are of continental origin, but it is possible that one Madeiran clade may be monophyletic with a Canarian clade. The Calathus faunas of Tenerife and Madeira are recent in origin, similar to patterns previously reported for La Gomera, El Hierro, and Gran Canaria.  相似文献   

2.
The banana weevil (BW), Cosmopolites sordidus (Coleoptera: Curculionidae), is one of the most important insect pests of bananas and plantains. The mobility and the origin of BW infestations at the Canary Islands (Tenerife, La Gomera and La Palma) have been analysed using Random Amplified Polymorphic DNA (RAPD) as molecular markers. Populations from Costa Rica, Colombia, Uganda and Madeira were also included for comparison. One hundred and fifteen reproducible bands from eight primers were obtained. The level of polymorphism in the populations from the Canary Islands (40-62%) was in the range of those found in other populations. Nei's genetic distances, pair-wise fixation index (FST) values indicate that the closest populations are Tenerife populations among themselves (Nei's genetic distance=0.054-0.100; FST=0.091-0.157) and Costa Rica and Colombia populations (Nei's genetic distance=0.049; FST=0.113). Our results indicate the existence of BW local biotypes with limited gene flow and affected by genetic drift. These results are compatible with a unique event of colonization at Tenerife; whereas, the outbreaks in La Gomera and La Palma may come from independent introductions. The Madeira population is phylogenetically and geographically closer to the Canary Islands populations, suggesting that it is the most likely source of the insects introduced in the Canary Islands.  相似文献   

3.
Analysis of biogeographic affinities is a key tool to establish and improve the resolution of hierarchical biogeographic systems. We describe patterns of species richness of the marine macroalgal flora across Lusitanian Macaronesia (Azores, Madeira, the Salvage Islands and the Canary Islands), and test (i) whether such differences are related to differences in proximity to the nearest continental shore and size among islands. We also explore biogeographic affinities in the composition of macroalgal assemblages (= presence/absence of each taxon in multivariate datasets) to determine (ii) whether each archipelago is a biogeographic unit within this ecoregion and (iii) whether patterns in assemblage composition are related to proximity (i.e. distances) among islands. Presence/absence matrices were created to test and visualize multivariate affinities among archipelagos. A total of 872 taxa were compiled. Species richness peaked at the Canary Islands and decreased towards the Azores; the pattern matched a progressive increase in distance from the nearest continental shores, matching the classical island biogeography theory. Intra-archipelago differences in species richness were largely related to variations in island size. Biogeographic similarities among archipelagos were hierarchically structured. Madeira and the Salvage Islands constituted one biogeographic unit. Floras from the Azores, Madeira and the Salvage Islands were barely separable from each other, but were different from those at the Canary Islands. Such biogeographic similarities among islands were negatively correlated with the geographical separation (i.e. distances) among them. Proximity to nearby continental shores, in conjunction with large- and meso-scale oceanographic patterns, seems to interact to create patterns in richness and composition of algal assemblages across Lusitanian Macaronesia.  相似文献   

4.
This paper provides comparative information on the reproductive biology of the alfonsino, Beryx splendens Lowe, 1834, species with commercial interest in the Azores, Madeira and the Canary Islands. A total of 846 individuals from Azores (14.0–42.0 cm fork length), 621 from Madeira (17.2–50.0 cm fork length) and 643 from the Canaries (18.2–38.9 cm fork length) were used for the study. The alfonsino is gonochoric with no evidence of sexual dimorphism. Females are more abundant than males; this dominance probably reflects certain differences in the spatial distribution and/or the catchability of males and females in the Macaronesian archipelagos. The spawning season was distinct for the three Macaronesian areas, with an observed North–South variation in the reproductive period: September–March in the Azores, March–June in Madeira and July–September in the Canary Islands. The size at sexual maturity estimated for Madeira and the Canary Islands is similar (32 and 30 cm fork length, respectively), while for the Azores it is reached at smaller length (23 cm fork length). The differences observed in the size at sexual maturity can be explained by the different exploitation levels in each archipelago. Life‐history parameters of the alfonsino suggest that this species has a specialistic life‐history strategy and fisheries based on this species are more susceptible to growth overfishing and population depletion.  相似文献   

5.
The flightless beetle genus Tarphius Erichson (Coleoptera: Colydiidae) is a distinctive element of the beetle fauna of the Canary Islands with 29 species distributed across the five western islands. The majority of Tarphius species are rare and intimately associated with the monteverde forest and only two species occur on more than one island. In this study we investigate the phylogeography of the Canary Island Tarphius, and their relationship to Tarphius from the more northerly archipelagos of Madeira and the Azores using maximum parsimony and Bayesian inference analysis of mitochondrial cytochrome oxidase I and II sequence data. We use geological datings for the Canary Islands, Azores, and Madeira to calibrate specific nodes of the tree for the estimation of divergence times using a penalized likelihood method. Data suggest that the Canary Island species assemblage is of some antiquity, however, much of this species diversity is relatively recent in origin. The phylogenetic relationships of species inhabiting the younger islands of El Hierro and La Palma indicate that colonization events between islands have probably been a significant factor in the evolutionary history of the Canary Island species assemblage. A comparison of molecular phylogenetic studies of arthropods on the Canary Islands suggests that, in the evolution of the arthropod species community of an island, the origin of endemic species is initially the result of colonizing lineages differentiating from their source populations. However, as an island matures a greater proportion of endemic species originate from intra-island speciation.  相似文献   

6.
Tolpis consists of ~13 species native to Africa, Europe, and Macaronesia, with at least one species endemic to each of the four major archipelagos of the Azores, Madeira Islands, Canary Islands, and Cape Verde Islands. All but two of these species develop woody stems by maturity. Chloroplast DNA restriction site variation was analyzed for all species of Tolpis and four outgroups in order to understand the patterns of island colonization and evolution of woodiness in this genus. Parsimony analyses revealed a strongly supported monophyletic Tolpis. Within the genus, the following three well-supported groups were detected: all species from the Canary Islands and Cape Verde Islands, both Azorean species, and both continental species. The Canary Island/Cape Verde clade was sister to the two continental species, and the Azorean clade was sister to this group. The two Madeiran species of Tolpis occupied the basalmost positions within the genus. When biogeography was mapped onto this phylogeny, nine equally parsimonious reconstructions (five steps each) of dispersal history were detected, which fell into two groups: eight reconstructions implied that Tolpis colonized Madeira from the continent, followed by continental extinction and subsequent continental recolonization, while one reconstruction implied that Tolpis colonized Macaronesia four times. Two of the reconstructions involving continental extinction required the least amount of overall dispersal distance. The cpDNA phylogeny also suggests that woodiness arose in the common ancestor of all extant Tolpis, followed by two independent reversals to an herbaceous habit. Assuming that one of the eight reconstructions favoring continental extinction and recolonization is true, our results suggest that Tolpis may represent the first documented example of a woody plant group in Macaronesia that has recolonized the mainland in herbaceous form.  相似文献   

7.
Two hundred and four rabbits from 8 Macaronesian islands (Pico, San Jorge, San Miguel, Terceira, and Flores from Azores Archipelago; Tenerife and Alegranza from Canary Islands; and Madeira from Madeira Archipelago) were examined for helminth parasites between 1995 and 2000. Three species of cestodes, Taenia pisiformis (larvae), Andrya cuniculi, and Mosgovoyia ctenoides, and 5 species of nematodes, Trichuris leporis, Graphidium strigosum, Trichostrongylus retortaeformis, Passalurus ambiguus, and Dermatoxys hispaniensis, were identified. Only 3 species (M. ctenoides, T. retortaeformis, and P. ambiguus) were regularly distributed over the 3 archipelagos. Taenia pisiformis was not collected in Madeira, nor was A. cuniculi in the Azores and G. strigosum in the Canary Islands. Trichuris leporis and D. hispaniensis were only found in Madeira. Significant differences in the general prevalence of the nematodes G. strigosum and T. retortaeformis were detected between Azores and Madeira. The prevalence of T. retortaeformis differs significantly between the Azores and the Canaries and that of P. ambiguus was higher in Madeira than in Azores and Canaries. The helminth richness found in the wild rabbit in these Macaronesian archipelagos was very low compared with the Palearctic helminth fauna of this host. The wild rabbit was introduced from the Iberian Peninsula into different Macaronesian islands. Helminths introduced with Oryctolagus cuniculus into these islands also are commonly found in Iberian wild rabbits, which are excellent colonizers, as demonstrated in this study.  相似文献   

8.
The 14 species of Crambe L. sect. Dendrocrambe DC. (Brassicaceae) form a monophyletic group endemic to the Canary and Madeira archipelagos. Both parsimony and maximum likelihood analyses of sequence data from the two internal transcribed spacer regions of nuclear ribosomal DNA were used to estimate phylogenetic relationships within this section. These analyses support the monophyly of three major clades. No clade is restricted to a single island, and therefore it appears that inter-island colonization has been the main avenue for speciation in these two archipelagos. The two species endemic to Fuerteventura (C. sventenii) and Madeira (C. fruticosa) comprise a clade, providing the first evidence for a floristic link between the Eastern Canary Islands and the archipelago of Madeira. Both maximum likelihood and weighted parsimony analyses show that this clade is sister to the two other clades, although bootstrap support for this relationship is weak. Parsimony optimizations of ecological zones and island distribution suggest a colonization route from the low-altitude areas of the lowland scrub toward the high-elevation areas of the laurel and pine forests. In addition, Tenerife is likely the ancestral island for species endemic to the five westernmost islands of Gran Canaria, La Gomera, El Hierro, La Palma, and Tenerife.  相似文献   

9.
Abstract.  We investigated the phylogenetic patterns, evolutionary processes, and their taxonomic implications, of two closely related shield-backed katydid genera endemic to the Macaronesian archipelagos: the monotypic Psalmatophanes Chopard, 1938 endemic to Madeira and Calliphona Krauss, 1892, which includes three species restricted to the Canary Islands. Two main hypotheses have been proposed to explain the origin and colonization pathways of these two genera: a single origin with subsequent sequential colonization of the islands, or three independent colonization waves from continental Africa. We used DNA sequence information from the mitochondrial genes cox1, tRNAleucine, rrnL and nad1 to infer phylogenetic relationships among Psalmatophanes and Calliphona species. Our results provide support for the independent colonization of Madeira and the Canary Islands, and suggest that Psalmatophanes is actually more closely related to the continental genus Tettigonia than to the Canarian representatives. Deep genetic divergence among Canarian species provides further support for the assignment of the Canarian species into two subgenera. Tree topology along with Bayesian-based estimates of lineage age suggest a pattern of colonization from Tenerife to La Palma, and from Tenerife to Gran Canaria with subsequent dispersal to La Gomera. We report the first collection of a Calliphona specimen in the island of El Hierro, which molecular data suggest is a recent immigrant from La Gomera. We hypothesize that the patterns of distribution and genetic divergence exhibited by Calliphona in the Canary Islands are compatible with a taxon cycle process. Our results have further implications for the higher level phylogeny of the subfamily Tettigoniinae and suggest that some of the tribes as currently delimited may not correspond to natural groups.  相似文献   

10.
Abstract A molecular phylogenetic study of Bystropogon L'Her. (Lamiaceae) is presented. We performed a cladistic analysis of nucleotide sequences of the internal transcribed spacers (ITS), of the nuclear ribosomal DNA, and of the trnL gene and trnL-trnF intergenic spacer of the chloroplast DNA. Bystropogon odoratissimus is the only species endemic to the Canary Islands that occurs in the three palaeo-islands of Tenerife. This species is not part of an early diverging lineage of Bystropogon and we suggest that it has a recent origin. This phylogenetic pattern is followed by most of the species endemic to the palaeo-islands of Tenerife. The two sections currently recognized in Bystropogon form two monophyletic groups. Taxa belonging to the section Bystropogon clade show interisland colonization limited to the Canary Islands with ecological shifts among three ecological zones. Taxa from the section Canariense clade show interisland colonization both within the Canary Islands and between the Canary Islands and Madeira. Speciation events within this clade are mostly limited to the laurel forest. The genus has followed a colonization route from the Canaries towards Madeira. This route has also been followed by at least five other plant genera with species endemic to Macaronesia. Major incongruences were found between the current infrasectional classification and the molecular phylogeny, because the varieties of Bystropogon origanifolius and Bystropogon canariensis do not form two monophyletic groups. The widespread B. origanifolius appears as progenitor of the other species in section Bystropogon with a more restricted distribution.  相似文献   

11.
12.
The Canary Islands have been a focus for phylogeographic studies on the colonization and diversification of endemic angiosperm taxa. Based on phylogeographic patterns, both inter island colonization and adaptive radiation seem to be the driving forces for speciation in most taxa. Here, we investigated the diversification of Micromeria on the Canary Islands and Madeira at the inter- and infraspecific level using inter simple sequence repeat PCR (ISSR), the trnK-Intron and the trnT-trnL-spacer of the cpDNA and a low copy nuclear gene. The genus Micromeria (Lamiaceae, Mentheae) includes 16 species and 13 subspecies in Macaronesia. Most taxa are restricted endemics, or grow in similar ecological conditions on two islands. An exception is M. varia, a widespread species inhabits the lowland scrub on each island of the archipelago and could represent an ancestral taxon from which radiation started on the different islands. Our analyses support a split between the "eastern" islands Fuerteventura, Lanzarote and Gran Canaria and the "western" islands Tenerife, La Palma and El Hierro. The colonization of Madeira started from the western Islands, probably from Tenerife as indicated by the sequence data. We identified two lineages of Micromeria on Gomera but all other islands appear to be colonized by a single lineage, supporting adaptive radiation as the major evolutionary force for the diversification of Micromeria. We also discuss the possible role of gene flow between lineages of different Micromeria species on one island after multiple colonizations.  相似文献   

13.
Phylogenetic relationships in the Olea europaea complex and the phylogeography of 24 populations of the Macaronesian olive (O. europaea ssp. cerasiformis) were assessed by using three molecular markers: nuclear ribosomal internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR). Parsimony analysis of the ITS-1 sequences and Neighbour-joining (NJ) analyses of RAPD and ISSR banding variation revealed four major lineages in the O. europaea complex: (1) ssp. cuspidata; (2) ssp. cerasiformis from Madeira; (3) ssp. laperrinei; and (4) ssp. cerasiformis from the Canary Islands plus ssp. europaea. These results provide unequivocal support for two independent dispersal events of Olea to the Madeira and Canary Islands. Molecular and morphological evidence led to recognition of two separate olive taxa in Macaronesia, to date included in ssp. cerasiformis. NJ analyses of the combined RAPD and ISSR data suggest that the colonization of the Canaries by O. europaea may have followed an east to west stepping-stone model. An interisland dispersal sequence can be recognized, starting from the continent to Fuerteventura, Gran Canaria, Tenerife, La Gomera, and finally La Palma. High dispersal activity of the lipid-rich Olea fruits by birds in the Mediterranean region is congruent with multiple dispersal of olives to Macaronesia and successive colonization of the archipelagos. The observation of strong genetic isolation between populations of different islands of the Canary Islands suggests, however, that subsequent interisland dispersal and establishment has been very rare or may not have occurred at all.  相似文献   

14.
Carine & Schaefer (Journal of Biogeography, 2010, 37 , 77–89) suggest that the lack of past climate oscillations in the Azores may have contributed to the low plant endemism in this archipelago compared to that of the Canary Islands, a pattern they term the Azorean diversity enigma. Here we challenge their hypothesis, and discuss how the particular characteristics of the Azores may have driven current diversification patterns in this archipelago. We argue that the restricted number of Azorean endemic species and their wide distribution is explicable by the geological, geographical and ecological attributes of the archipelago. That is, the Azores are too young, too small, and too environmentally homogeneous to have hosted many in situ diversification events, so they do not host as many endemic species as other Macaronesian archipelagos, such as Madeira and especially the Canary Islands.  相似文献   

15.
In the present study we undertook an integrative approach, using both morphological and molecular data (COI-5P + rbcL), to assess the presence of Laurencia pyramidalis in Lusitanian Macaronesia. We studied type material of L. pyramidalis from the herbarium of the Naturalis Biodiversity Center, the Netherlands, and designated a lectotype and syntypes. Vegetative and reproductive features of L. pyramidalis were observed and we included a specimen from the type locality in our molecular analyses. We also investigated the geographical distribution of Laurenciella marilzae, a species recently described from the Canary Islands. Barcode sequences (COI-5P and rbcL) were generated for L. pyramidalis from the type locality (Normandy, France), the Azores, Madeira and the Canary Islands, and for L. marilzae from its type locality (Tenerife, Canary Islands), the Azores and Brazil.  相似文献   

16.
Nucleotide variation at the nuclear ribosomal protein 49 (rp49) gene region has been analysed by fine restriction mapping in a sample of 47 lines from a population from Madeira. Five restriction-site (out of 37 sites scored) and 3 length polymorphisms have been detected, resulting in 14 different haplotypes. This population shows less variation than both continental and Canary Island populations. The population from Madeira shows some differentiation from mainland populations, which does not favor the idea of extensive migration between the continent and Madeira. Chromosomal and restriction-map variation of the rp49 region in D. subobscura populations, together with data on sequence comparison of this nuclear region in D. guanche and D. madeirensis clearly indicate that the Canary Islands underwent at least two colonization events from the nearby continent. Although the data for Madeira are compatible with a single colonization event by a continental sample polymorphic for gene arrangements O3 and O3 + 4, an alternative scenario with at least two colonization events seems more likely.  相似文献   

17.
Two varieties of Sideritis massoniana from Madeira (Madeira archipelago) and one from Fuerteventura (Canary Islands) have been examined. Diterpenes, triterpenes, sterols, flavonoids, coumarins and lignans have been isolated. A new coumarin, 7-demethyl-siderin acetate, and the uncommon sterol, 7-oxo-β-sitosterol, have been obtained from S. massoniana var. crassifolia. From the chemosystematic point of view these three taxa of Sideritis belong to one of the groups of the Canarian species of this genus, and should be classified as three different species.  相似文献   

18.
We have studied the matrilineal genetic composition of the Madeira and Açores north Atlantic archipelagos, which were settled by the Portuguese in the 15th century. Both archipelagos, and particularly Madeira, were involved in a complex commercial network established by the Portuguese, which included the trading of slaves across the Atlantic. One hundred and fifty-five mtDNAs sampled from the Madeira and 179 from the Açores archipelagos were analysed for the hypervariable segment I (HVS-I), and for haplogroup-diagnostic coding-region RFLPs. The different settlement histories of both groups of islands are well reflected in their present day mtDNA pool. Although both archipelagos show identical diversity values, they are clearly different in their haplogroup content. Madeira displays a stronger sub-Saharan imprint, with haplogroups L1–L3 constituting about 13% of the lineages. Also, the relative frequencies of L sub-clusters in Madeira and mainland Portugal suggests that, at least in part, African presence in Madeira can be attributed to a direct gene flow from West Africa and not via Portugal. A comparison of the genetic composition of these two archipelagos with the Canary Islands, specially taking into account that their European source population was essentially from the Iberian Peninsula, testifies the stronger impact of the North African U6 cluster in the Canaries. This group is present in Madeira at a moderate frequency, but very reduced in the Açores. Nevertheless the recorded introduction of Canary native Guanches, who are characterized by the presence of particular sub-clade U6b1, has left no detectable imprints in the present day population of Madeira.  相似文献   

19.
Phylogeography of island canary (Serinus canaria) populations   总被引:2,自引:2,他引:0  
Island canaries (Serinus canaria) are characterised as a species living exclusively on North Atlantic islands, mainly on the Azores, Madeira and Canary Islands. Although they are very common in their habitats, their behaviour and breeding system has only recently been studied systematically. To advance the understanding of their ecology and to see if the rather isolated archipelagos are already promoting a genetic differentiation, we investigated their phylogeographic relationship as revealed by mtDNA sequences of the cytochrome b gene and investigated whether this measure corresponds to morphological characteristics within the islands. Genetic distances were very low throughout the distribution range of the species. Although the variation of genetic distances within the population of Pico (Azores) was larger than that on Madeira and Canary Islands, the genetic distances between island populations were very low throughout which prevented a clear phylogeographic differentiation. Moreover, morphological measurements did not reveal a consistent pattern to reliably separate the populations, although the measures of beak length and body weight revealed a clear island-specific differentiation. These data lead to the assumption that the colonisation of the Atlantic islands by the canaries occurred very recently, while there is no persisting gene flow between the populations.  相似文献   

20.
Loggerhead sea turtles (Caretta caretta) originating from the Western Atlantic carry out one of the largest marine migrations, reaching the eastern Atlantic and Mediterranean Sea. It has been proposed that this transatlantic journey is simply a consequence of drifting, with the lack of a target destination and a passive dispersal with oceanic currents. This predicts that the size of the source populations and geographic distance to the feeding grounds should play important roles in defining stock composition in the eastern Atlantic and Mediterranean Sea. Under this scenario, near pelagic stocks would have no genetic structure, and would be composed of similar cohorts from regional rookeries. To address this question, we sampled individuals from one important eastern Atlantic feeding ground, the Canary Islands, and sequenced a fragment of the mitochondrial DNA control region. We compared the composition of this feeding stock with published data of other proximal areas: Madeira, Azores and Andalusia. “Rookery-centric” mixed stock analysis showed that the distribution of loggerhead sea turtles along the eastern Atlantic feeding grounds was in latitudinal accordance to their natal origin: loggerhead turtles from Florida were significantly more abundant in Azores (30%) than in Canary Islands (13%), while those from Mexico had a poor representation in Azores (13%) but were more prevalent in Canary Islands (34%). Also, genetic stability in temporal and size analyses of the Canary Island aggregation was found, showing a long period of residency. These results indicate a non-random distribution of loggerhead juveniles in oceanic foraging grounds. We discuss possible explanations to this latitudinal variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号