首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the presence or absence of methyl groups on the N6 atoms of two adjacent adenosines near the 3' end of 16 S rTNA of Escherichia coli on initiation of protein biosynthesis has been studied using wild type (methylated) and kasugamycin-resistant (unmethylated) E. coli ribosomes (see preceding paper (Poldermans, B., Goosen, N., and Van Knippenberg, P. H. (1979) J. Biol. Chem. 254, 9085--9089)). Conditions of pH, temperature, and ionic strength at which binding of fMet-tRNA to ribosomes proceeds maximally are the same for wild type and mutant ribosomes. Mg2+- and factor-dependent dissociation of ribosomes as well as the association of the subunits is also the same for methylated and unmethylated ribosomes. Binding of fMet-tRNA to wild type and to mutant 70 S ribosomes requires the same amount of the three initiation factors. However, optimal fMet-tRNA binding to unmethylated 30 S ribosomes needs more of initiation factor 3 than does binding to methylated 30 S ribosomes, provided that initiation factor 1 is absent. This difference is completely abolished when mutant 30 S ribosomes are methylated using purified methylase from the wild type strain and the methyl donor S-adenosylmethionine.  相似文献   

2.
Ribosomal RNAs undergo several nucleotide modifications including methylation. We identify FtsJ, the first encoded protein of the ftsJ-hflB heat shock operon, as an Escherichia coli methyltransferase of the 23 S rRNA. The methylation reaction requires S-adenosylmethionine as donor of methyl groups, purified FtsJ or a S(150) supernatant from an FtsJ-producing strain, and ribosomes from an FtsJ-deficient strain. In vitro, FtsJ does not efficiently methylate ribosomes purified from a strain producing FtsJ, suggesting that these ribosomes are already methylated in vivo by FtsJ. FtsJ is active on ribosomes and on the 50 S ribosomal subunit, but is inactive on free rRNA, suggesting that its natural substrate is ribosomes or a pre-ribosomal ribonucleoprotein particle. We identified the methylated nucleotide as 2'-O-methyluridine 2552, by reverse phase high performance liquid chromatography analysis, boronate affinity chromatography, and hybridization-protection experiments. In view of its newly established function, FtsJ is renamed RrmJ and its encoding gene, rrmJ.  相似文献   

3.
Widerak M  Kern R  Malki A  Richarme G 《Gene》2005,347(1):109-114
We have recently identified RrmJ, the first encoded protein of the rrmJ-ftsH heat shock operon, as being the Um(2552) methyltransferase of 23S rRNA, and reported that rrmJ-deficient strains exhibit growth defects, reduced translation rates and reduced stability of 70S ribosomes. U2552 is an ubiquitously methylated residue. It belongs to the A loop of 23S RNA which is an essential component of the ribosome peptidyltransferase centre and interacts directly with aminoacyl(A)-site tRNA. In the present study, we show that a lack of U2552 methylation, obtained in rrmJ-deficient mutants, results in a decrease in programmed +1 and -1 translational frameshifing and a decrease in readthrough of UAA and UGA stop codons. The increased translational accuracy of rrmJ-deficient strains suggests that the interaction between aminoacyl-tRNA and U2552 is important for selection of the correct tRNA at the ribosomal A site, and supports the idea that translational accuracy in vivo is optimal rather than maximal, thus pointing to the participation of recoding events in the normal cell physiology.  相似文献   

4.
A partially purified tRNA methylase fraction from rat liver, containing m(2)G- m(1)A- and m(5)C-methylase, was used to study the influence of Mg(++) and of the biogenic polyamine cadaverine on the enzymatic methylation of E.coli tRNA(fMet)in vitro. In presence of 1 or 10 mM Mg(++), guanosine no. 27 was methylated to m(2)G. In 1 mM Mg(++) plus 30 mM cadaverine, guanosine in position 27 and adenosine in position 59 were methylated. In presence of 30 mM cadaverine alone tRNA(fMet) accepted three methyl groups: in addition to guanosine no. 27 and adenosine no. 59 cytidine no. 49 was methylated. In order to correlate tRNA(fMet) tertiary structure changes with the methylation patterns, differentiated melting curves of tRNA(fMet) were measured under the methylation conditions. It was shown that the thermodynamic stability of tRNA(fMet) tertiary structure is different in presence of Mg(++), or Mg(++) plus cadaverine, or cadaverine alone. From the differentiated melting curves and from the methylation experiments one can conclude that at 37 degrees in the presence of Mg(++) tRNA(fMet) has a compact structure with the extra loop and the TpsiC-loop protected by tertiary structure interactions. In Mg(++) plus cadaverine, the TpsiC-loop is available, while the extra loop is yet engaged in teritary structure (G-15: C-49) interactions. In cadaverine alone, the TpsiC-loop and the extra loop are free; hence under these conditions the open tRNA(fMet) clover leaf may be the substrate for methylation. In general, cadaverine destabilizes tRNA tertiary structure in the presence of Mg(++), and stabilizes tRNA(fMet) tertiary structure in the absence of Mg(++). This may be explained by a competition of cadaverine with Mg(++) for specific binding sites on the tRNA. On the basis of these experiments a possible role of biogenic polyamines in vivo may be discussed: as essential components of procaryotic and eucaryotic ribosomes they may together with ribosomal factors facilitate tRNA-ribosome binding during protein biosynthesis by opening the tRNA tertiary structure, thus making the tRNA's TpsiC-loop available for interaction with the complementary sequence of the ribosomal 5S RNA.  相似文献   

5.
The purified 30 S ribosomal proteins from Escherichia coli strain Q13 were chemically modified by reaction with ethyleneimine, specifically converting cysteine residues to S-2-aminoethylcysteine residues. Proteins S1, S2, S4, S8, S11, S12, S13, S14, S17, S18 and S21 were found to contain aminoethylcysteine residues after modification, whereas proteins S3, S5, S6, S7, S9, S10, S15, S16, S19 and S20 did not. Aminoethylated proteins S4, S13, S17 and S18 were active in the reconstitution of 30 S ribosomes and did not have altered functional activities in poly(U)-dependent polyphenylalanine synthesis, R17-dependent protein synthesis, fMet-tRNA binding and Phe-tRNA binding. Aminoethylated proteins S2, S11, S12, S14 and S21 were not active in the reconstitution of complete 30 S ribosomes, either because the aminoethylated protein did not bind stably to the ribosome (S2, S11, S12 and S21) or because the aminoethylated protein did not stabilize the binding of other ribosomal proteins (S14). The functional activities of 30 S ribosomes reconstituted from a mixture of proteins containing one sensitive aminoethylated protein (S2, S11, S12, S14 or S21) were similar to ribosomes reconstituted from mixtures lacking that protein. These results imply that the sulfhydryl groups of the proteins S4, S13, S17 and S18 are not necessary for the structural or functional activities of these proteins, and that aminoethylation of the sulfhydryl groups of S2, S11, S12, S14 and S21 forms either a kinetic or thermodynamic barrier to the assembly of active 30 S ribosomes in vitro.  相似文献   

6.
Abstract

The ∈-amino groups of the six lysyl residues of the fd gene 5 DNA-binding protein have been modified by reductive methylation to form N, N-dimethyl lysyl derivatives containing 13C-labeled methyl groups. The α-amino terminus of the protein was not accessible to methylation. Circular dichroism studies show that the modified protein binds to fd DNA, but with a slightly reduced affinity compared with that of unmodified gene 5 protein. We also find that both the modified and unmodified proteins bind to an oligodeoxynucleotide, d(A)7, but in neither case does binding cause a decrease in the 228 nm CD band of the protein as occurs when the protein binds to long DNA polymers. 13C NMR spectra at 50.1 MHz of [13C]methylated gene 5 protein show five distinct resonances between 43.30 and 42.76 ppm originating from the six N, N-dimethyl lysyl residues. We attribute one of the resonances to two solvated lysyl residues and the other four to individual lysyl residues in different microenvironments. All four of these latter resonances are affected by the binding of d(A)7. However, since two of these resonances are similarly affected by the presence of salt in the absence of DNA, only two are uniquely affected by DNA binding.  相似文献   

7.
Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes   总被引:7,自引:0,他引:7  
A 15-nucleotide fragment of RNA having the sequence of the anticodon arm of yeast tRNAPhe was constructed using T4 RNA ligase. The stoichiometry and binding constant of this oligomer to poly(U)-programmed 30 S ribosomes was found to be identical to that of deacylated tRNAPhe. The anticodon arm and tRNAPhe also compete for the same binding site on the ribosome. These data indicate that the interaction of tRNAPhe with poly(U)-programmed 30 S ribosomes is primarily a result of contacts in the anticodon arm region and not with other parts of the transfer RNA. Since similar oligomers which cannot form a stable helical stem do not bind ribosomes, a clear requirement for the entire anticodon arm structure is demonstrated.  相似文献   

8.
T A Gerken 《Biochemistry》1984,23(20):4688-4697
13C NMR spectroscopy has been used to study the amino group environments and metal binding properties of 13C reductively methylated bovine alpha-lactalbumin. Bovine alpha-lactalbumin is a Ca2+ metalloprotein containing 12 lysyl amino groups and a free amino terminus. All 13 amino groups can be 13C-dimethylated without altering Ca2+ binding or biological activity. pH titrations (chemical shift vs. pH) of this dimethylated protein reveal unique behavior for each of the 13 amino groups. The pKa values for the lysyl amino groups range from 9.1 to 10.8 while the pKa for the N-terminal amino group is 8.3. This relatively high pKa (by 1 pH unit) for the N-terminal supports its interaction in an ion pair as proposed by Warme et al. [Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., & Scheraga, H. A. (1974) Biochemistry 13, 768-782]. Carbon-13 NMR studies further show that the removal of Ca2+ from the high-affinity binding site results in a conformational change, with the disruption of the N-terminal ion pair interaction (pKa decreased to 7.4). The study of Zn2+ binding to Ca2+-saturated protein suggests that Zn2+ binds initially at a low-affinity Ca2+ site while maintaining the N-terminal ion pair interaction. The further addition of Zn2+ leads to the disruption of this ion pair forming a presumed apoprotein-like conformation. Finally on the basis of the specific effects of added Mn2+ on the 13C NMR spectra of the methylated protein, a low-affinity divalent metal binding site is proposed about 7.5 A from the amino terminus.  相似文献   

9.
Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins' molar extinction coefficients at 280 nm. For the Bradford assay, the responses (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar, with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines compared with the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed.  相似文献   

10.
Hydrogen bonding between the 3' terminus of 16 S rRNA (... C-A-C-C-U-C-C-U-U-A-OH3) and complementary sequences within the initiator region of mRNA may be a crucial event in the specific initiation of protein biosynthesis (Shine, J., and Dalgarno, L. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 1342-1346; Steitz, J. A., and Jakes, K. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 4734-4738). Using equilibrium dialysis, we have studied the binding of G-A-dG-dG-U (which is complementary to the 3' end of 16 S rRNA and which has been synthesized enzymatically) to initiation factor-free Escherichia coli ribosomes. We have also investigated the effects of the pentanucleotide on initiation reactions in E. coli ribosomes. G-A-dG-dG-U has a specific binding site on the 30 S ribosome with an association constant of 2 x 10(6) M-1 at 0 degrees C. G-A-dG-dG-U inhibits the R17 mRNA-dependent binding of fMet-tRNA by about 70%, both with 70 S ribosomes and 30 S subunits. In contrast, the A-U-G-dependent initiation reaction and the poly(U)-dependent Phe-tRNA binding was not affected by the pentanucleotide with both ribosomal species.  相似文献   

11.
The interaction of E. coli vacant ribosomes with acridine orange (AO) was studied, to obtain conformational information about rRNAs in ribosomes. Acridine orange binds to an RNA in two different modes: cooperative outside binding with stacking of bound AO's and intercalation between nucleotide bases. Free 16S and 23S rRNAs have almost identical affinities to AO. At 1 mM Mg2+, AO can achieve stacking binding on about 40% of rRNA phosphate groups. The number of stacking binding sites falls to about 1/3 in the 30S subunit in comparison with free 16S rRNA. In the 50S subunit, the number of stacking binding sites is only 1/5 in comparison with free 23S rRNA. Mg2+ ions are more inhibitory for the binding of AO to ribosomes than to free rRNAs. The strength of stacking binding appears to be more markedly reduced by Mg2+ in active ribosomes than in rRNAs. "Tight couple" 70S particles are less accessible for stacking binding than free subunits. The 30S subunits that have irreversibly lost the capability for 70S formation under low Mg2+ conditions have an affinity to AO that is very different from that of active 30S but similar to that of free rRNA, though the number of stacking binding sites is little changed by the inactivation. 70S and 30S ribosomes with stacking bound AO's have normal sedimentation constants, but the 50S subunits reversibly form aggregates.  相似文献   

12.
In a previous publication1 we reported that the tyrosine selective reagent, tetraitromethane, causes complete inactivation of E. coli 30S ribosomes for poly U directed non-enzymatic phe-tRNA binding. This inactivation was demonstrated to be due to the chemical modification of the protein moiety of the ribosome. We have no identified the proteins of the 30S particle inactivated by this modification. Using a method of ribosome reconstruction we have found that unmodified proteins S1, S11, and S21 are essential for the restoration of the phe-tRNA binding activity of tetranitromethane inactivated ribosomes. We propose that these three proteins are intimately involved in the 30S ribosome binding site for tRNA.  相似文献   

13.
Two Escherichia coli mutants lacking ribosomal protein L1, previously shown to display 40 to 60% reduced capacity for in vitro protein synthesis (Subramanian, A. R., and Dabbs, E. R. (1980) Eur. J. Biochem. 112, 425-430), have been used to study partial reactions of protein biosynthesis. Both the binding of N-acetyl-Phe-tRNA to ribosomes and the 6 to 8-fold stimulation of the elongation factor G (EF-G)-dependent GTPase reaction by mRNA plus tRNA, assayed in the presence of wild type 30 S subunits, were low with L1-deficient 50 S subunits. Addition of pure protein L1 to the assay restored both reactions to 100% of the control. By contrast, the basic EF-G GTPase reaction in the absence of mRNA and tRNA was not at all affected (mRNA alone had no effect). None of the following partial reactions were more than moderately modified by the lack of protein L1: binding to ribosomes of EF-G.GDP plus fusidic acid; the translocation reaction catalyzed by EF-G plus GTP; poly(U)-dependent binding to ribosomes of Phe-tRNAPhe (whether dependent on elongation factor Tu plus GTP or not); and the EF-Tu-dependent GTPase activity. It is concluded that protein L1 is involved in the interaction between ribosomes and peptidyl-tRNA (or tRNA) in the peptidyl site and consequently in the ribosomal GTPase activity depending on the simultaneous action of tRNA and EF-G.  相似文献   

14.
We have examined the role of lysyl residues in the binding of fd gene 5 protein to a nucleic acid polymer. The lysyl residues of the protein were chemically modified to form N epsilon, N epsilon-dimethyllysyl derivatives containing 13C-enriched methyl groups. The 13C NMR spectrum of the modified protein was studied as a function of pH and salt concentration. Differences in the local magnetic environment of the six dimethyllysyl amino groups allowed all six 13C resonances to be resolved for samples in the pH range 8.5-9.0 at less than 50 mM ionic strength. One of the dimethylamino resonances was split at low pH, indicating that the two methyl groups were nonequivalent and that the corresponding lysyl residue (either Lys-3 or Lys-7) might be involved in an ion-pairing interaction. Specific lysyl residues were protected from methylation when the protein was bound to poly(rU). The level of protection of individual lysyl residues was quantitated using peptide mapping and sequencing of gene 5 protein labeled with 3H and 14C radioactive labels. Lysines 24, 46, and 69 showed significant protection (33-52%) from methylation in the protein-polynucleotide complex, suggesting that these 3 residues form part of the nucleic acid-binding site. The alpha-amino group of Met-1 was relatively unreactive in both the free and bound protein, which indicated that the amino terminus is not as exposed in solution as in the crystal structure (Brayer, G.D., and McPherson, A. (1983) J. Mol. Biol. 169, 565-596).  相似文献   

15.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

16.
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently identified and shown to specifically methylate U1498. Here we describe the enzymatic properties and substrate specificity of RsmE. The enzyme forms dimers in solution and is most active in the presence of 10-15 mM Mg(2+) and 100 mM NH(4)Cl at pH 7-9; however, in the presence of spermidine, Mg(2+) is not required for activity. While small ribosome subunits obtained from an RsmE deletion strain can be methylated by purified RsmE, neither 70S ribosomes nor 50S subunits are active. Likewise, 16S rRNA obtained from the mutant strain, synthetic 16S rRNA, and 3' minor domain RNA are all very poor or inactive as substrates. 30S particles partially depleted of proteins by treatment with high concentrations of LiCl or in vitro reconstituted intermediate particles also show little or no methyl acceptor activity. Based on these data, we conclude that RsmE requires a highly structured ribonucleoprotein particle as a substrate for methylation, and that methylation events in the 3' minor domain of 16S rRNA probably occur late during 30S ribosome assembly.  相似文献   

17.
Wower IK  Zwieb CW  Guven SA  Wower J 《The EMBO journal》2000,19(23):6612-6621
UV irradiation of an in vitro translation mixture induced cross-linking of 4-thioU-substituted tmRNA to Escherichia coli ribosomes by forming covalent complexes with ribosomal protein S1 and 16S rRNA. In the absence of S1, tmRNA was unable to bind and label ribosomal components. Mobility assays on native gels demonstrated that protein S1 bound to tmRNA with an apparent binding constant of 1 x 10(8) M(-1). A mutant tmRNA, lacking the tag coding region and pseudoknots pk2, pk3 and pk4, did not compete with full-length tmRNA, indicating that this region is required for S1 binding. This was confirmed by identification of eight cross-linked nucleotides: U85, located before the resume codon of tmRNA; U105, in the mRNA portion of tmRNA; U172 in pK2; U198, U212, U230 and U240 in pk3; and U246, in the junction between pk3 and pk4. We concluded that ribosomal protein S1, in concert with the previously identified elongation factor EF-Tu and protein SmpB, plays an important role in tmRNA-mediated trans-translation by facilitating the binding of tmRNA to ribosomes and forming complexes with free tmRNA.  相似文献   

18.
The interaction between Escherichia coli translation-initiation factor IF-1 and ribosomes was studied in binding experiments by Airfuge centrifugation. IF-1 binds to the 30S, but not to the 50S, ribosomal subunit and its binding is strongly stimulated by IF-3 and IF-2, either alone or in combination. From the dependence of the Kd of the 30S-subunit--IF-1 complex on ionic strength, it can be concluded that IF-1 binds primarily via an ionic interaction, most likely with the 16S rRNA, with the minimum number of ion pairs involved being 2.7-3.6. The 30S-subunit--IF-1 interaction is unaffected by temperature changes between 11 degrees C and 44 degrees C and is thus accompanied by a negligible enthalpy change. It is concluded that the interaction is an entropy-driven process triggered mainly by the release of counter ions from the RNA phosphates. Titration of 30S-subunit--IF-1 complexes with 50S subunits causes the ejection of the factor indicating that IF-1 is released from the ribosomes during the subunit association step which marks the transition from a 30S-initiation-complex to a 70S initiation complex.  相似文献   

19.
The two sulfhydryl groups of ribosomal protein S1 from Escherichia coli have been labeled with fluorescent maleimides and the distance between them has been determined by nonradiative energy transfer. This distance was found to be approximately 27 A for both free S1 and S1 bound to 30 S subunits. This value probably represents an upper limit. The position of the fluorescence emission maximum indicates that both sulfhydryl groups are in a relatively hydrophobic environment. When poly(U) is added to labeled S1, either free or in 30 S subunits, the emission maximum shifts to the red by about 3 nm but without a detectable change in the interthiol distance. S1 labeled at one or both of its sulfhydryl groups retains most of its ability to enhance poly(U)-directed polyphenylalanine synthesis. About the same concentration of poly(U) is required to give the maximum shift in fluorescence as is required to give maximum polyphenylalanine synthesis, indicating that S1 binds poly(U) during translation. The peptide initiation inhibitor aurintricarboxylic acid almost completely quenches the fluorescence from either labeled sulfhydryl groups in S1 bound to ribosomes or free in solution. This quenching probably is due to energy transfer from the labeled sulfhydryls to bound aurintricarboxylic acid. Fluorescence anisotropy measurements indicated that the C-terminal domain of S1 is relatively rigid, but retains some independent movement when attached to ribosomes. The overall data are consistent with a model in which a region near the two sulfhydryl groups in the elongated C-terminal domain functions to sequester and bind mRNA to the ribosome during peptide synthesis.  相似文献   

20.
The spatial organization of template polynucleotides on the ribosome and the dynamics of their interaction with 30 S subunits have been studied by fluorescence spectroscopy. The topography of the mRNA in the ribosome has been determined using singlet-singlet energy transfer. This method has allowed us to estimate distances between donors and acceptors of energy which have been linked to the terminal residues of template polynucleotides (poly- and oligo(U) and oligo(A] and 16 S RNA or to SH-groups of ribosomal proteins S1 and S8. The dynamics of mRNA-ribosome interaction have been investigated by the fluorescence stopped-flow technique. It has been shown that the binding to the 30 S subunit of poly(U) with length much shorter (16 nucleotides) than that covered by the ribosome is greatly enhanced by protein S1. However, the final position of oligo(U)16 on the 30 S subunit, which probably includes the ribosomal decoding site, proves to be quite different from that occupied by oligo(U)16 on a free protein S1. Interaction of oligo- and poly(U) with the 30 S subunit occurs in at least two steps: the first one is as fast as the interaction of poly(U) with free S1, whereas the second step represents a first-order reaction. Therefore, the second step may reflect some rearrangement of the template in the ribosome after its primary binding. It is suggested that protein S1 in some cases may fulfill the role of a transient binding site for mRNA in the course of its interaction with the ribosome. The general shape of the template in the mRNA binding region of the ribosome has been studied using various synthetic ribopolynucleotides and has been shown to be similar. It can be represented by a loop(s) or "U-turn(s)". On the basis of estimation of distances from the ends of poly(U) to some well-localized points on the 30 S ribosomal surface, a tentative model of mRNA path through the ribosome is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号