首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.  相似文献   

2.
The soybean vegetative storage protein genes (vspA, and vspB) are regulated in a complex manner developmentally and in response to external stimuli such as wounding and water deficit. The proteins accumulate to almost one-half the amount of soluble leaf protein when soybean plants are continually depodded and have been identified as storage proteins because of their abundance and pattern of expression in plant tissues. We have shown that purified VSP homodimers (VSP alpha and VSP beta) and heterodimers (VSP alpha/beta) possess acid phosphatase activity (alpha = 0.3-0.4 units/mg; beta = 2-4 units/mg; alpha/beta = 7-10 units/mg). Specific activities were determined by monitoring o-carboxyphenyl phosphate (0.7 mM) cleavage at pH 5.5 (VSP alpha) or pH 5.0 (VSP alpha/beta and VSP beta) in 0.15 M sodium acetate buffer at 25 degrees C. These enzymes are active over a broad pH range, maintaining greater than 40% of maximal activity from pH 4.0 to 6.5 and having maximal activity at pH 5.0-5.5. They are inactivated by sodium fluoride, sodium molybdate, and heating at 70 degrees C for 10 min. These phosphatases can liberate Pi from several different substrates, including napthyl acid phosphate, carboxyphenyl phosphate, sugar-phosphates, glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, phosphoenolpyruvate, ATP, ADP, PPi, and short chain polyphosphates. VSP alpha/beta cleaved phosphoenolpyruvate, ATP, ADP, PPi, and polyphosphates most efficiently. Apparent Km and Vmax values at 25 degrees C and pH 5.0 were 42 microM and 2.0 mumol/min/mg, 150 microM and 4.2 mumol/min/mg, and 420 microM and 4.1 mumol/min/mg, for tetrapolyphosphate, pyrophosphate, and phosphoenolpyruvate, respectively.  相似文献   

3.
Acid phosphatases (E.C.3.1.3.2) are a group of enzymes widely distributed in nature, which nonspecifically catalyze the hydrolysis of a variety of phosphate esters in pH ranges from 4 to 6 and play a major role in the supply and metabolism of phosphate in plants. The objective of the present study was to investigate the in vitro effects of some metals on the activity of acid phosphatase in cucumber seedlings (Cucumis sativus L.) and to determine their kinetic parameters. The enzyme was assayed with Hg, Cd, Mn, Pb, Zn, K and Na at the 0.001–1 mM range using ATP, PPi and β-glycerol phosphate as substrates. Mn, Na and Cd did not significantly alter the enzyme activity. K caused a broad activation at low concentrations and an inhibition at high concentrations (10 mM) and lead caused no inhibition. Acid phosphatase was inhibited by Hg and Zn and the inhibition type and IC50 values were determined for these metals. Hg presented a mixed inhibition type with PPi and ATP as substrates and uncompetitive inhibition with β-glycerol phosphate as substrate. Zn presented competitive inhibition for ATP as substrate, and a mixed inhibition type with PPi and β-glycerol phosphate as substrate. IC50 values were 0.02, 0.3 and 0.15 mM for Hg, and 0.056, 0.035 and 0.24 mM for Zn with ATP, PPi and β-glycerol phosphate as substrates, respectively. Analysis of these results indicates that Zn is a more potent inhibitor of acid phosphatase from cucumbers than Hg.  相似文献   

4.
Kinetic properties of rat liver acid phosphatase were evaluated using the conventional synthetic substrates sodium beta glycerophosphate (betaGP) and p-nitrophenyl phosphate (PNPP) and physiologically occurring phosphate esters of carbohydrates, vitamins and nucleotides. The extent of hydrolysis varied depending on the substrates; phosphate esters of vitamins and carbohydrates were in general poor substrates. Kinetic analysis revealed the presence of two components of the enzyme for all the substrates. Component I had low Km and low Vmas. Opposite was true for component II. The Km values were generally high for betaGP, PNPP and adenosine diphosphate (ADP). Amongst the nucleotides substrates AMP showed high affinity i.e. low Km. The increase in enzyme activity in general at high substrate concentration seems to be due to substrate binding and positive cooperativity. AMP which showed highest affinity was inhibitory at high concentration beyond 1 mM. The results suggest that in situ the nucleotides may be the preferred substrates for acid phosphatase.  相似文献   

5.
Live Trypanosoma cruzi amastigotes hydrolyzed p-nitrophenylphosphate (PNPP), phospho-amino-acids and 32P-casein under physiologically appropriate conditions. PNPP was hydrolysed at a rate of 80 nmol.mg-1.h-1 in the presence of 5 mM MgCl2, pH 7.2 at 30 degrees C. In the absence of Mg2+ the activity was reduced 40% and we call this basal activity. At saturating concentration of PNPP, half-maximal PNPP hydrolysis was obtained with 0.22 mM MgCl2. Ca2+ had no effect on the basal activity, could not substitute Mg2+ as an activator and in contrast inhibited the PNPP hydrolysis stimulated by Mg2+ (I50 = 0.43 mM). In the absence of Mg2+ (basal activity) the stimulating half concentration (S0.5) for PNPP was 1.57 mM, while at saturating MgCl2 concentrations the corresponding S0.5 for PNPP for Mg(2+)-stimulated phosphatase activity (difference between total minus basal phosphatase activity) was 0.99 mM. The Mg-dependent PNPP hydrolysis was strongly inhibited by sodium fluoride (NaF), vanadate and Zn2+ but not by tartrate and levamizole. The Mg-independent basal phosphatase activity was insensitive to tartrate, levamizole as well NaF and less inhibited by vanadate and Zn2+. Intact amastigotes were also able to hydrolyse phosphoserine, phosphothreonine and phosphotyrosine but only the phosphotyrosine hydrolysis was stimulated by MgCl2 and inhibited by CaCl2 and phosphotyrosine was a competitive inhibitor of the PNPP hydrolysis stimulated by Mg2+. The cells were also able to hydrolyse 32P-casein phosphorylated on serine and threonine residues but only in the presence of MgCl2. These results indicate that in the amastigote form of T. cruzi there are at least two ectophosphatase activities, one of which is Mg2+ dependent and can dephosphorylate phospho-amino acids and phosphoproteins under physiological conditions.  相似文献   

6.
C J Fielding 《Biochemistry》1976,15(4):879-884
The kinetic constants for membrane-supported lipoprotein lipase have been determined for the enzyme active in lipoprotein triglyceride catabolism in perfused heart and adipose tissues, using a nonrecirculating system. Heart endothelial lipoprotein lipase reacted as a single population of high-affinity substrate binding sites (Km' 0.07 mM triglyceride). Km' (apparent Michaelis constant for the supported enzyme species) was independent of flow rate and the enzyme was rapidly released by heparin, suggestive of a superficial membrane binding site. Lipoprotein lipase active in perfused adipose tissue had significantly different kinetic properties, including a low substrate affinity (Km' 0.70 mM triglyceride), diffusion dependence of Km' at low flow rates, and slow release of enzyme by heparin. Adipose tissue may contain a small proportion of high affinity sites. While only a small proportion of total heart tissue lipoprotein lipase was directly active in triglyceride hydrolysis, this study suggests that the major part of lipoprotein lipase in adipose tissue may be involved in the hydrolysis of circulating lipoprotein triglyceride.  相似文献   

7.
The Pi-ATP exchange and ATP hydrolytic reactions, by the F0F1 complex, were studied in Rhodospirillum rubrum chromatophores in the dark. An optimal pH between 7.0 and 8.5 was determined for the hydrolytic and exchange reactions. Under these conditions, the hydrolysis/exchange ratio was approximately 2. The kinetic analysis of the hydrolytic and exchange reactions using Mg-ATP as substrate showed a change in the hydrolysis/exchange ratio that varied between 2.0 and 2.8 as the substrate concentration was increased. With Ca-ATP, hydrolysis was not saturated up to a substrate concentration of 5.0 mM, and the hydrolysis/exchange ratios changed from 2 to 240 as the substrate concentration was increased from 0.06 to 5.0 mM. Free Mg2+ inhibited hydrolysis and phosphate uptake without altering the hydrolysis/exchange ratio. Nigericin induced an increase in the hydrolysis/exchange ratio from 2.7 to 130, whereas in the presence of valinomycin, this ratio increased from 2.7 to 21. From these results, it can be concluded that Ca-ATP hydrolysis is loosely coupled to phosphate uptake given that Pi-ATP exchange activity is extremely low, even at high rates of ATP hydrolysis.  相似文献   

8.
We describe the isolation and characterization of a gene (ptpA) from Streptomyces coelicolor A3(2) that codes for a protein with a deduced M(r) of 17,690 containing significant amino acid sequence identity with mammalian and prokaryotic small, acidic phosphotyrosine protein phosphatases (PTPases). After expression of S. coelicolor ptpA in Escherichia coli with a pT7-7-based vector system, PtpA was purified to homogeneity as a fusion protein containing five extra amino acids. The purified fusion enzyme catalyzed the removal of phosphate from p-nitrophenylphosphate (PNPP), phosphotyrosine (PY), and a commercial phosphopeptide containing a single phosphotyrosine residue but did not cleave phosphoserine or phosphothreonine. The pH optima for PNPP and PY hydrolysis by PtpA were 6.0 and 6.5, respectively. The Km values for hydrolysis of PNPP and PY by PtpA were 0.75 mM (pH 6.0, 37 degrees C) and 2.7 mM (pH 6.5, 37 degrees C), respectively. Hydrolysis of PNPP by S. coelicolor PtpA were 0.75 mM (pH 6.0, 37 degrees C) and 2.7 mM (pH 6.5, 37 degrees C), respectively. Hydrolysis of PNPP by S. coelicolor PtpA was competitively inhibited by dephostatin with a Ki of 1.64 microM; the known PTPase inhibitors phenylarsine oxide, sodium vanadate, and iodoacetate also inhibited enzyme activity. Apparent homologs of ptpA were detected in other streptomycetes by Southern hybridization; the biological functions of PtpA and its putative homologs in streptomycetes are not yet known.  相似文献   

9.
The influence of drought stress on the ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activity by plasma membrane H+-ATPase was investigated using purified plasma membrane vesicles from wheat leaves by two-phase partitioning. Drought stress increased the ATPase activity, and the optimal pH was shifted from 6.5 to about 7.0. Drought stress also stimulated the PNPP hydrolysis rate. The Km for PNPP hydrolysis was moved from 4.49 ± 0.33 mM to 3.64 ± 0.12 mM. In addition, the PNPP hydrolysis was more sensitive to vanadate under drought compared to the control. However, the inhibitory effect of hydroxylamine on the ATPase was not changed by the present drought stress. In addtion, drought stress also decreased the trypsin activation of PNPP hydrolysis by PM H+-ATPase. These results suggested that drought stress altered the catalytic mechanism of the plasma membrane H+-ATPase, and the stimulation of its activity by drought stress was mainly due to increase of the catalytic activity of its phosphatase domain. It is also suggested that drought stress might alter the structure or property of the C-terminal end of PM H+-ATPase, therefore increasing the catalytic activity of the phosphatase domain.  相似文献   

10.
Nucleoside triphosphate pyrophosphohydrolase (EC 3.6.1.8) activity is associated with matrix vesicles purified from collagenase digests of fetal calf epiphyseal cartilage. This enzyme hydrolyzes nucleoside triphosphates to nucleotides and PPi, the latter inducing precipitation in the presence of Ca2+ and Pi. An assay for matrix vesicle nucleoside triphosphate pyrophosphohydrolase is developed using beta, gamma-methylene ATP as substrate. The assay is effective in the presence of matrix vesicle-associated ATPase, pyrophosphatase, and alkaline phosphatase activities. A soluble nucleoside triphosphate pyrophosphohydrolase is obtained from matrix vesicles by treatment with 5 mM sodium deoxycholate. The solubilized enzyme induced the precipitation of calcium phosphate in the presence of ATP, Ca2+, and Pi. Extraction of deoxycholate-solubilized enzymes from matrix vesicles with 1-butanol destroys nucleoside triphosphate pyrophosphohydrolase activity while enhancing the specific activities of ATPase, pyrophosphatase, and alkaline phosphatase. In solutions devoid of ATP and matrix vesicles, concentrations of PPi between 10 and 100 microM induce calcification in mixtures containing initial Ca2+ X P ion products of 3.5 to 7.9 mM2. This finding plus the discovery of nucleoside triphosphate pyrophosphohydrolase in matrix vesicles supports the view that these extracellular organelles induce calcium precipitation by the enzymatic production of PPi. Nucleoside triphosphate pyrophosphohydrolase is more active against pyrimidine nucleoside triphosphates than the corresponding purine derivatives. The pH optimum is 10.0 and the enzyme is neither activated nor inhibited by Mg2+ or Ca2+ ions or mixtures of the two. Vmax at pH 7.5 for beta, gamma-methylene ATP is 0.012 mumol of substrate hydrolyzed per min per mg of protein and Km is below 10 microM. The enzyme is irreversibly destroyed at pH 4 and is stable at pH 10.5.  相似文献   

11.
Summary Glucose 6-phosphate hydrolysis in pancreatic islets of mice was visualized by the Gomori technique. Staining intensities were quantitatively assayed in a microscope photometer, and enzyme activities were expressed in arbitrary units, after correction of optical densities according to lead sulfide standards.Glucose 6-phosphate was most rapidly split at a pH of about 6.7. At this pH level there was a low rate of -glycerophosphate hydrolysis, the ratio between the activities toward the two substrates (40 mM) being 4.0. In contrast to glucose 6-phosphate, -glycerophosphate was more rapidly split at pH 5.0 than at pH 6.7. Preincubation of the cryostat sections at pH 5.0 for 15—30 min inactivated the glucose 6-phosphate-splitting activity. Inactivation of the enzyme activity toward glucose 6-phosphate also occurred during brief fixation of the sections in glutaraldehyde or formalin. The apparent K m for glucose 6-phosphate was 1–5 mM in the islets but in the order of 20 mM in the acinar tissue. Glucose was a potent inhibitor of glucose 6-phosphate hydrolysis, the apparent K m being strikingly increased by the sugar. These results support previous biochemical evidence for the presence of glucose 6-phosphatase in the pancreatic islets of mice. The kinetics of the enzyme in the cryostat section are furthermore consistent with the hypothesis that glucose 6-phosphatase is part of the -cell's glucoreceptor mechanism.  相似文献   

12.
A continuous, coupled, spectrophotometric assay is described in which the enzyme ATP sulfurylase is employed to measure the concentration of inorganic pyrophosphate (PPi) at equilibrium with known concentrations of inorganic orthophosphate (Pi) in the presence of excess inorganic pyrophosphatase (PPitase). In agreement with previous reports, the apparent equilibrium constant (Keq,app) of the PPi hydrolysis reaction was shown to decrease as the concentration of Mg2+ is increased. At pH 7.3, 30 degrees C, in the presence of 150 mM NaCl and 1 mM free Mg2+, Keq,app (calculated as [Pi]t2/[PPi]t) was 1950. Measurements of Keq,app at different total concentrations of Mg2+ and Pi permitted the determination of K0, the dissociation constant of the Mg-Pi complex. In 0.05 M Tris-Cl, pH 8.0, at 30 degrees C, K0 was 3.6 mM. In the presence of excess ATP sulfurylase, yeast PPitase catalyzed PPi formation from Pi with a specific activity (Vmax) of 9 units X mg protein-1 at pH 8.0, 30 degrees C, and 1 mM free Mg2+. Half-maximum reverse reaction velocity was observed at a total Pi concentration of 18 mM. (Under the same conditions, Vmax of the PPi hydrolysis reaction was 530 units X mg protein-1.) A radiochemical end point ("reaction-to-completion") assay for measuring unknown concentrations of PPi was devised. In the presence of excess 35S-adenosine-5'-phosphosulfate ([35S]APS) as the cosubstrate, 35SO2-4 formation was stoichiometric with added PPi. (The 35SO2-4 and [35S]APS are separated by adsorption of the latter onto charcoal.) The sensitivity of the assay can be adjusted by varying the specific radioactivity of the [35S]APS. In the absence of interfering substances, as little as 2 pmol of PPi per 1.0 ml assay volume can be measured. The sensitivity of the assay is reduced in the presence of ATP plus perchlorate (which synergistically inhibit the enzyme). However, if the bulk of the ATP is removed from perchloric acid extracts of tissues with glucose and hexokinase, initial intracellular levels as low as 1 microM can be measured. The possibility that most of the cellular PPi extracted with perchloric acid was originally enzyme bound is discussed.  相似文献   

13.
The complete time course of the hydrolysis of p-nitrophenyl phosphate catalyzed by the low molecular weight (acid) phosphotyrosyl protein phosphatase from bovine heart was elucidated and analyzed in detail. Burst titration kinetics were demonstrated for the first time with this class of enzyme. At pH 7.0, 4.5 degrees C, a transient pre-steady-state "burst" of p-nitrophenol was formed with a rate constant of 48 s-1. The burst was effectively stoichiometric and corresponded to a single enzyme active site/molecule. The burst was followed by a slow steady-state turnover of the phosphoenzyme intermediate with a rate constant of 1.2 s-1. Product inhibition studies indicated an ordered uni-bi kinetic scheme for the hydrolysis. Partition experiments conducted for several substrates revealed a constant product ratio. Vmax was constant for these substrates, and the overall rate of hydrolysis was increased greatly in the presence of alcohol acceptors. An enzyme-catalyzed 18O exchange between inorganic phosphate and water was detected and occurred with kcat = 4.47 x 10(-3) s-1 at pH 5.0, 37 degrees C. These results were all consistent with the existence of a phosphoenzyme intermediate in the catalytic pathway and with the breakdown of the intermediate being the rate-limiting step. The true Michaelis binding constant Ks = 6.0 mM, the apparent Km = 0.38 mM, and the rate constants for phosphorylation (k2 = 540 s-1) and dephosphorylation (k3 = 36.5 s-1) were determined under steady-state conditions with p-nitrophenyl phosphate at pH 5.0 and 37 degrees C in the presence of phosphate acceptors. The energies of activation for the enzyme-catalyzed hydrolysis at pH 5.0 and 7.0 were 13.6 and 14.1 kcal/mol, respectively. The activation energy for the enzyme-catalyzed medium 18O exchange between phosphate and water was 20.2 kcal/mol. Using the available equilibrium and rate constants, an energetic diagram was constructed for the enzyme-catalyzed reaction.  相似文献   

14.
Aldose reductase (alditol:NADP+ 1-oxidoreductase, EC 1.1.1.21) has been purified 1500-fold from porcine brain in a four-step procedure employing Blue-Sepharose 6B affinity chromatography. The purified enzyme was shown to be apparently homogeneous by polyacrylamide gel electrophoresis. The enzyme is a single chain polypeptide of molecular weight 40 000, pH optimum 5.0 K(app)(xylose) 4 mM; K(app)(NADPH) 3 microM. The relative substrate activities, activation with sulfate ion, and limited oxidative and NADH-related reductive activities confirm the classification of this enzyme as aldolase reductase. The activity of the reductase with p-nitrobenzaldehyde and 3-indolacetaldehyde and the similarity of its physical properties with the 'low Km' aldehyde reductase of porcine brain previously reported indicates that these enzymes may be identical.  相似文献   

15.
M W Pinkse  M Merkx  B A Averill 《Biochemistry》1999,38(31):9926-9936
Purple acid phosphatases (PAPs) employ a dinuclear Fe(3+)Fe(2+) or Fe(3+)Zn(2+) center to catalyze the hydrolysis of phosphate monoesters. The interaction of fluoride with bovine spleen purple acid phosphatase (BSPAP) has been studied using a combination of steady-state kinetics and spectroscopic methods. For FeZn-BSPAP, the nature of the inhibition changes from noncompetitive at pH 6.5 (K(i(comp)) approximately K(i(uncomp)) approximately 2 mM) to uncompetitive at pH 5.0 (K(i(uncomp)) = 0.2 mM). The inhibition constant for AlZn-BSPAP at pH 5.0 (K(i) = 3 microM) is approximately 50-70-fold lower than that observed for both FeZn-BSAP and GaZn-BSPAP, suggesting that fluoride binds to the trivalent metal. Fluoride binding to the enzyme-substrate complex was found to be remarkably slow; hence, the kinetics of fluoride binding were studied in some detail for FeZn-, AlZn-, and FeFe-BSPAP at pH 5.0 and for FeZn-BSPAP at pH 6.5. Since the enzyme kinetics studies indicated the formation of a ternary enzyme-substrate-fluoride complex, the binding of fluoride to FeZn-BSPAP was studied using optical and EPR spectroscopies, both in the presence and absence of phosphate. The characteristic optical and EPR spectra of FeZn-BSPAP. F and FeZn-BSPAP.PO(4).F are similar at pH 5.0 and pH 6.5, indicating the formation of similar fluoride complexes at both pHs. A structural model for the ternary enzyme-(substrate/phosphate)-fluoride complexes is proposed that can explain the results from both the spectroscopic and the enzyme kinetics experiments. In this model, fluoride binds to the trivalent metal replacing the water/hydroxide ligand that is essential for the hydrolysis reaction to take place, while phosphate or the phosphate ester coordinates to the divalent metal ion.  相似文献   

16.
Summary Fixation of cells with glutaraldehyde (5.0%, pH 6.7) was found to facilitate both the penetration of substrate (p-nitrophenyl phosphate) into cells and the leaking out of intracellular phosphate ions. 64% of the original activity survived the fixation for at least 24 hours. Lead ions added to the incubation medium at 6 mM neither accelerated nonenzymatic hydrolysis of the substrate, nor completely inactivated the enzyme activity. Lead ions at concentrations above 6 mM formed an insoluble compound with p-nitrophenyl phosphate, resulting in a decrease in the concentration of free substrate and lead ions. Phosphate ions liberated from substrate could not be completely trapped by lead ions even at above 6 mM, suggesting the possibility of intracellular migration of phosphate ions.In the presence of 4 mM p-nitrophenyl phosphate, 6 mM lead nitrate, and 0.2 M sucrose at pH 6.5, lead salt precipitates were deposited on the outer surface of cell walls, within cell walls, at tonoplast membranes, in nuclei, and occasionally in proplastids. No deposition of lead salt was formed in the control test from which the substrate was omitted. When cells were treated at first with lead nitrate and then with potassium phosphate, lead salt deposits were formed in the same sites as those of cells incubated in a complete reaction medium.It is concluded that although the result of the lead salt precipitation procedure reflects the presence of enzyme activity, it cannot directly show the site of the enzyme.  相似文献   

17.
The kinetics of hydrolysis by Pseudomonas aeruginosa elastase at 37 degrees C and pH 7.3 of 3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine is compatible with nonproductive substrate inhibition, i.e., v = V.[S]/(Km + [S] + [S]2/K1), and the values of Km, Ki, and kappa cat are 1.4 mM, 5.0 mM, and 240 s-1, respectively. Product inhibition experiments are in agreement with an ordered release of product, with L-phenylalanyl-L-phenylalanine, the amino-containing product, being released first from the elastase.product complex. The values of Ki for L-phenylalanyl-L-phenylalanine and 3-(2-furyl)acryloyl-glycine are 1.5 and 4.0 mM, respectively. Kinetic experiments indicate that the second molecule of substrate combines with elastase.substrate to form a dead-end elastase . (substrate)2 complex.  相似文献   

18.
Purified rabbit liver fructose diphosphatase has been found to catalyze the hydrolysis of p-nitrophenyl phosphate, PNPP. It has been established that the hydrolysis of p-nitrophenyl phosphate is due to fructose diphosphatase through studies of the chromatographic properties of the enzyme, its temperature sensitivity, dependence on divalent cations and its inhibition by fructose diphosphate. The Km for PNPP is 6 × 10−3M at pH 9.2, 5 × 10−4M at pH 7.5. This substrate should facilitate studies of the kinetics and mechanism of action of fructose diphosphatase and the comparison of this enzyme with other alkaline phosphatases.  相似文献   

19.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We describe and compare the main kinetic characteristics of the (alpha beta)(2) form of rabbit kidney Na,K-ATPase. The dependence of ATPase activity on ATP concentration revealed high (K(0.5)=4 microM) and low (K(0.5)=1.4 mM) affinity sites for ATP, exhibiting negative cooperativity and a specific activity of approximately 700 U/mg. For p-nitrophenylphosphate (PNPP) as substrate, a single saturation curve was found, with a smaller apparent affinity of the enzyme for this substrate (K(0.5)=0.5 mM) and a lower hydrolysis rate (V(M)=42 U/mg). Stimulation of ATPase activity by K(+) (K(0.5)=0.63 mM), Na(+) (K(0.5)=11 mM) and Mg(2+) (K(0.5)=0.60 mM) all showed V(M)'s of approximately 600 U/mg and negative cooperativity. K(+) (K(0.5)=0.69 mM) and Mg(2+) (K(0.5)=0.57 mM) also stimulated PNPPase activity of the (alpha beta)(2) form. Ouabain (K(0.5)=0.01 microM and K(0.5)=0.1 mM) and orthovanadate (K(0.5)=0.06 microM) completely inhibited the ATPase activity of the (alpha beta)(2) form. The kinetic characteristics obtained constitute reference values for diprotomeric (alpha beta)(2)-units of Na,K-ATPase, thus contributing to a better understanding of the biochemical mechanisms of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号