首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Endopalsmic reticulum (ER) is specialized organelle to maintain the integrity of secreted and membranous proteins. ER also senses so-called “ER stress”, which is a resulted from a various internal and external stresses, and triggers apoptosis when the diverse attempts to accommodate with the stress are in fail. The impairment these ER functions has been implicated in several human diseases, in which aberrant ER stress induced apoptosis is observed. We discuss about another disease model related with ER mediated apoptosis based on the recent studies about Synoviolin, an E3 ubiquitin ligase inherently utilized for ER associated degradation (ERAD). In addition to its canonical role in ERAD, Synoviolin targets tumor suppressor gene p53 for proteasomal degradation, suggesting the crosstalk between ERAD and p53 mediated apoptotic pathway under ER stress. Together with the anti-apoptotic property of Synoviolin previously elucidated by both in vitro and in vivo analyses, its new function in p53 regulation may provide a new insight into the pathomechanism of proliferative diseases such as cancer or rheumatoid arthritis.  相似文献   

4.
Essential role of synoviolin in embryogenesis   总被引:4,自引:0,他引:4  
We recently reported the importance of Synoviolin in quality control of proteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) system and its involvement in the pathogenesis of arthropathy through its anti-apoptotic effect. For further understanding of the role of Synoviolin in vivo, we generated in this study synoviolin-deficient (syno(-/-)) mice by genetargeted disruption. Strikingly, all fetuses lacking syno died in utero around embryonic day 13.5, although Hrd1p, a yeast orthologue of Synoviolin, is non-essential for survival. Histologically, hypocellularity and aberrant apoptosis were noted in the syno(-/-) fetal liver. Moreover, definitive erythropoiesis was affected in non-cell autonomous manner in syno(-/-) embryos, causing death in utero. Cultured embryonic fibroblasts derived from syno(-/-) mice were more susceptible to endoplasmic reticulum stress-induced apoptosis than those from syno(+/+) mice, but the susceptibility was rescued by overexpression of synoviolin. Our findings emphasized the indispensable role of the Synoviolin in embryogenesis.  相似文献   

5.
Epstein-Barr virus (EBV) has been implicated in the pathogenesis of rheumatoid arthritis (RA) on the basis of indirect evidence, such as its presence in affected joint tissues, antigenic cross reactions between EBV and human proteins, and elevated humoral and cellular anti-EBV immune responses in patients. Here we report development of erosive arthritis closely resembling RA in humanized mice inoculated with EBV. Human immune system components were reconstituted in mice of the NOD/Shi-scid/IL-2Rγ(null) (NOG) strain by transplantation with CD34(+) hematopoietic stem cells isolated from cord blood. These humanized mice were then inoculated with EBV and examined pathologically for the signs of arthritis. Erosive arthritis accompanied by synovial membrane proliferation, pannus formation, and bone marrow edema developed in fifteen of twenty-three NOG mice transplanted with human HSC and inoculated with EBV, but not in the nine NOG mice that were transplanted with HSC but not inoculated with EBV. This is the first report of an animal model of EBV-induced arthritis and strongly suggest a causative role of the virus in RA.  相似文献   

6.
7.
By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal degenerative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is responsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin promoter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synoviolin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12 cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Synoviolin expression through NFE2L1 as a previously unappreciated molecular mechanism underlying the neuronal protective function of Icariin.  相似文献   

8.
Although the etiology of early events in rheumatoid arthritis (RA) remains undefined, an anomaly in T cell homeostasis and hyperproliferation of synovial-lining cells are involved in the disease process. Since it has been reported that the ephrin/Eph receptor system plays important signaling roles in inflammation processes, we attempted to examine ephrinB molecules in T cells and synovial cells derived from RA in this study. The expression level of ephrinB1 was significantly high in synovial fibroblasts and CD3-positive exudate lymphocytes in synovial tissues derived from patients with RA compared with those in osteoarthritis (OA). Protein and mRNA levels of ephrinB1 were also higher in peripheral blood lymphocytes (PBLs) prepared from patients with RA than those from normal controls. Similar results were obtained from an animal model of human RA, collagen antibody-induced arthritis mice. Moreover, a recombinant ephrinB1/Fc fusion protein stimulated normal PBLs to exhibit enhanced migration and production of TNF-alpha. EphrinB1/Fc also activated synovial cells established from patients with RA to produce IL-6. Tyrosine phosphorylation of EphB1 was induced in these cells by ephrinB1/Fc. The CpG islands in the 5' upstream regulatory region of the ephrinB1 gene were hypomethylated in RA patients compared with those of normal donors. These results suggest that ephrinB1 and EphB1 receptors play an important role in the inflammatory states of RA, especially by affecting the population and function of T cells. Inhibition of the ephrinB/EphB system might be a novel target for the treatment of RA.  相似文献   

9.
10.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory and destructive disease of the joint. The synovial lining consists of two main types of cells: synovial fibroblasts and macrophages. The macrophage-derived cytokine TNFα stimulates RA synovial fibroblasts to proliferate and produce growth factors, chemokines, proteinases and adhesion molecules, making them key players in the RA disease process. If proteins are not correctly folded, cellular stress occurs that can be relieved in part by increased degradation of the aberrant proteins by the proteasome or autophagy. We hypothesized that the activity of the protein degradation pathways would be increased in response to TNFα stimulation in RA synovial fibroblasts compared with control fibroblasts.

Methods

Endoplasmic reticulum (ER) stress markers were examined in synovial fibroblasts by immunoblotting and PCR. Use of the autophagy and proteasome protein degradation pathways in response to TNFα stimulation was determined using a combination of experiments involving chemical inhibition of the autophagy or proteasome pathways followed by immunoblotting for the autophagy marker LC3, measurement of proteasome activity and long-lived protein degradation, and determination of cellular viability.

Results

RA synovial fibroblasts are under acute ER stress, and the stress is increased in the presence of TNFα. Autophagy is the main pathway used to relieve the ER stress in unstimulated fibroblasts, and both autophagy and the proteasome are more active in RA synovial fibroblasts compared with control fibroblasts. In response to TNFα, the autophagy pathway but not the proteasome is consistently stimulated, yet there is an increased dependence on the proteasome for cell viability. If autophagy is blocked in the presence of TNFα, an increase in proteasome activity occurs in RA synovial fibroblasts but not in control cells.

Conclusions

TNFα stimulation of synovial fibroblasts results in increased expression of ER stress markers. Survival of synovial fibroblasts is dependent on continuous removal of proteins by both the lysosome/autophagy and ubiquitin/proteasome protein degradation pathways. Both pathways are more active in RA synovial fibroblasts compared with control fibroblasts. These results may provide a better understanding of the mechanism of TNFα on prolonging the survival of synovial fibroblasts in RA tissue.  相似文献   

11.
Rheumatoid arthritis (RA) is an autoimmune synovitis characterized by the formation of pannus and the destruction of cartilage and bone in the synovial joints. Although immune cells, which infiltrate the pannus and promote inflammation, play a prominent role in the pathogenesis of RA, other cell types also contribute. Proliferation of synovial fibroblasts, for example, underlies the formation of the pannus, while proliferation of endothelial cells results in neovascularization, which supports the growth of the pannus by supplying it with nutrients and oxygen. The synovial fibroblasts also promote inflammation in the synovium by producing cytokines and chemokines. Finally, osteoclasts cause the destruction of bone. In this study, we show that erlotinib, an inhibitor of the tyrosine kinase epidermal growth factor receptor (EGFR), reduces the severity of established collagen-induced arthritis, a mouse model of RA, and that it does so by targeting synovial fibroblasts, endothelial cells, and osteoclasts. Erlotinib-induced attenuation of autoimmune arthritis was associated with a reduction in number of osteoclasts and blood vessels, and erlotinib inhibited the formation of murine osteoclasts and the proliferation of human endothelial cells in vitro. Erlotinib also inhibited the proliferation and cytokine production of human synovial fibroblasts in vitro. Moreover, EGFR was highly expressed and activated in the synovium of mice with collagen-induced arthritis and patients with RA. Taken together, these findings suggest that EGFR plays a central role in the pathogenesis of RA and that EGFR inhibition may provide benefits in the treatment of RA.  相似文献   

12.

Introduction

Tyrosine kinases are key mediators of multiple signaling pathways implicated in rheumatoid arthritis (RA). We previously demonstrated that imatinib mesylate--a Food and Drug Administration (FDA)-approved, antineoplastic drug that potently inhibits the tyrosine kinases Abl, c-Kit, platelet-derived growth factor receptor (PDGFR), and c-Fms--ameliorates murine autoimmune arthritis. However, which of the imatinib-targeted kinases is the principal culprit in disease pathogenesis remains unknown. Here we examine the role of c-Fms in autoimmune arthritis.

Methods

We tested the therapeutic efficacy of orally administered imatinib or GW2580, a small molecule that specifically inhibits c-Fms, in three mouse models of RA: collagen-induced arthritis (CIA), anti-collagen antibody-induced arthritis (CAIA), and K/BxN serum transfer-induced arthritis (K/BxN). Efficacy was evaluated by visual scoring of arthritis severity, paw thickness measurements, and histological analysis. We assessed the in vivo effects of imatinib and GW2580 on macrophage infiltration of synovial joints in CIA, and their in vitro effects on macrophage and osteoclast differentiation, and on osteoclast-mediated bone resorption. Further, we determined the effects of imatinib and GW2580 on the ability of macrophage colony-stimulating factor (M-CSF; the ligand for c-Fms) to prime bone marrow-derived macrophages to produce tumor necrosis factor (TNF) upon subsequent Fc receptor ligation. Finally, we measured M-CSF levels in synovial fluid from patients with RA, osteoarthritis (OA), or psoriatic arthritis (PsA), and levels of total and phosphorylated c-Fms in synovial tissue from patients with RA.

Results

GW2580 was as efficacious as imatinib in reducing arthritis severity in CIA, CAIA, and K/BxN models of RA. Specific inhibition of c-Fms abrogated (i) infiltration of macrophages into synovial joints of arthritic mice; (ii) differentiation of monocytes into macrophages and osteoclasts; (iii) osteoclast-mediated bone resorption; and (iv) priming of macrophages to produce TNF upon Fc receptor stimulation, an important trigger of synovitis in RA. Expression and activation of c-Fms in RA synovium were high, and levels of M-CSF were higher in RA synovial fluid than in OA or PsA synovial fluid.

Conclusions

These results suggest that c-Fms plays a central role in the pathogenesis of RA by mediating the differentiation and priming of monocyte lineage cells. Therapeutic targeting of c-Fms could provide benefit in RA.  相似文献   

13.
This study aimed to investigate the role and regulatory mechanisms of Ezrin in synovial vessels in rheumatoid arthritis (RA). Synovial tissues were obtained from people with osteoarthritis people and patients with RA patients. We also used an antigen-induced arthritis (AIA) mice model by using Freund's adjuvant injections. Ezrin expression was analysed by immunofluorescence and immunohistochemical staining in synovial vessels of patients with RA and AIA mice. We investigated the role of Ezrin on vascular endothelial cells and its regulatory mechanism in vivo and in vitro by adenoviral transfection technology. Our results suggest a role for the Ezrin protein in proliferation, migration and angiogenesis of vascular endothelial cells in RA. We also demonstrate that Ezrin plays an important role in vascular endothelial cell migration and tube formation through regulation of the Hippo-yes-associated protein 1 (YAP) pathway. YAP, as a key protein, can further regulate the activity of PI3K/Akt signalling pathway in vascular endothelial cells. In AIA mice experiments, we observed that the inhibition of Ezrin or of its downstream YAP pathway can affect synovial angiogenesis and may lead to progression of RA. In conclusion, Ezrin plays an important role in angiogenesis in the RA synovium by regulating YAP nuclear translocation and interacting with the PI3K/Akt signalling pathway.  相似文献   

14.
IntroductionInflammatory destructive arthritis, like rheumatoid arthritis (RA), is characterized by invasion of synovial fibroblasts (SF) into the articular cartilage and erosion of the underlying bone, leading to progressive joint destruction. Because fibroblast activation protein alpha (FAP) has been associated with cell migration and cell invasiveness, we studied the function of FAP in joint destruction in RA.MethodsExpression of FAP in synovial tissues and fibroblasts from patients with osteoarthritis (OA) and RA as well as from wild-type and arthritic mice was evaluated by immunohistochemistry, fluorescence microscopy and polymerase chain reaction (PCR). Fibroblast adhesion and migration capacity was assessed using cartilage attachment assays and wound-healing assays, respectively. For in vivo studies, FAP-deficient mice were crossed into the human tumor necrosis factor transgenic mice (hTNFtg), which develop a chronic inflammatory arthritis. Beside clinical assessment, inflammation, cartilage damage, and bone erosion were evaluated by histomorphometric analyses.ResultsRA synovial tissues demonstrated high expression of FAP whereas in OA samples only marginal expression was detectable. Consistently, a higher expression was detected in arthritis SF compared to non-arthritis OA SF in vitro. FAP-deficiency in hTNFtg mice led to less cartilage degradation despite unaltered inflammation and bone erosion. Accordingly, FAP−/− hTNFtg SF demonstrated a lower cartilage adhesion capacity compared to hTNFtg SF in vitro.ConclusionsThese data point to a so far unknown role of FAP in the attachment of SF to cartilage, promoting proteoglycan loss and subsequently cartilage degradation in chronic inflammatory arthritis.  相似文献   

15.
We reported recently that albumin is a suitable drug carrier for targeted delivery of methotrexate (MTX) to tumors. Due to pathophysiological conditions in neoplastic tissue, high amounts of albumin accumulate in tumors and are metabolized by malignant cells. MTX, covalently coupled to human serum albumin (MTX-HSA) for cancer treatment, is currently being evaluated in phase II clinical trials. Because synovium of patients with rheumatoid arthritis (RA) shares various features observed also in tumors, albumin-based drug targeting of inflamed joints might be an attractive therapeutic approach. Therefore, the pharmacokinetics of albumin and MTX in a mouse model of arthritis was examined. Additionally, uptake of albumin by synovial fibroblasts of RA patients and the efficacy of MTX and MTX-HSA in arthritic mice were studied. The results show that when compared with MTX, significantly higher amounts of albumin accumulate in inflamed paws, and significantly lower amounts of albumin are found in the liver and the kidneys. The protein is metabolized by human synovial fibroblasts in vitro and in vivo. MTX-HSA was significantly more effective in suppression of the onset of arthritis in mice than was MTX. In conclusion, albumin appears to be a suitable drug carrier in RA, most likely due to effects on synovial fibroblasts, which might increase therapeutic efficacy and reduce side effects of MTX.  相似文献   

16.
Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis (RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines (e.g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-γ at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA.  相似文献   

17.

Introduction  

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that mainly affects synovial joints. Biologics directed against tumor-necrosis-factor (TNF)-α are efficacious in the treatment of RA. However, the role of TNF receptor-1 (TNFR1) in mediating the TNFα effects in RA has not been elucidated and conflicting data exist in experimental arthritis models. The objective is to investigate the role of TNFR1 in the synovial lining cells (SLC) and the reticuloendothelial system (RES) during experimental arthritis.  相似文献   

18.

Introduction

Biological drugs are effective in patients with rheumatoid arthritis (RA), but increase severe infections. The CC chemokine receptor (CCR) 9 antagonist was effective for Crohn’s disease without critical adverse effects including infections in clinical trials. The present study was carried out to explore the pathogenic roles of chemokine (C-C motif) ligand (CCL) 25 and its receptor, CCR9, in autoimmune arthritis and to study if the CCR9 antagonist could be a new treatment for RA.

Methods

CCL25 and CCR9 expression was examined with immunohistochemistry and Western blotting. Concentration of interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and tumor necrosis factor (TNF)-α was measured with enzyme-linked immunosorbent assays. Effects of abrogating CCR9 on collagen-induced arthritis (CIA) was evaluated using CCR9-deficient mice or the CCR9 antagonist, CCX8037. Fluorescence labeled-CD11b+ splenocytes from CIA mice were transferred to recipient CIA mice and those infiltrating into the synovial tissues of the recipient mice were counted.

Results

CCL25 and CCR9 proteins were found in the RA synovial tissues. CCR9 was expressed on macrophages, fibroblast-like synoviocytes (FLS) and dendritic cells in the synovial tissues. Stimulation with CCL25 increased IL-6 and MMP-3 production from RA FLS, and IL-6 and TNF-α production from peripheral blood monocytes. CIA was suppressed in CCR9-deficient mice. CCX8037 also inhibited CIA and the migration of transferred CD11b+ splenocytes into the synovial tissues.

Conclusions

The interaction between CCL25 and CCR9 may play important roles in cell infiltration into the RA synovial tissues and inflammatory mediator production. Blocking CCL25 or CCR9 may represent a novel safe therapy for RA.  相似文献   

19.
Rheumatoid arthritis (RA) is an inflammatory disorder of the joints that affects 0.5–1 % of adults. Excessive growth of the fibroblast-like synoviocytes (FLS) promotes hyperplasia of synovial tissues and causes its invasion into the bone and cartilage, which eventually causes deformity and dysfunction of affected joints. Interleukin 35 (IL-35) was shown to suppress the inflammatory responses to collagen-induced arthritis (CIA) via upregulation of T regulatory cells and suppression of T helper type 17 cells in a mouse model. To study the effects of IL-35 on the proliferation and apoptosis frequency of cultured FLS isolated from mice with CIA as well as to examine the effects of IL-35 on CIA in vivo. Thirty DBA/1 J mice, which are used as an animal model for RA, were divided randomly (ten mice per group) to a CIA group (collagen treatment), a CIA + IL-35 group (collagen and IL-35 treatments), and a control group (no treatment). Starting on the 24th day after collagen administration, IL-35 was injected intraperitoneally into mice of the CIA + IL-35 group once per day for 10 days. An arthritis index was calculated, and pathological analysis of synovial tissue was performed. FLS isolated from CIA mice were treated with various concentrations of IL-35 (12.5–100 ng/ml). The MTT assay was used to examine FLS proliferation, and apoptosis frequency of FLS was detected by flow cytometry. On day 24, the CIA mice began to exhibit arthritis symptoms, and the symptoms rapidly progressed with time. Treatment with IL-35 significantly alleviated arthritis symptoms and reduced the synovial tissue inflammation. In addition, IL-35 treatment inhibited proliferation and promoted apoptosis in cultured FLS from CIA mice in a dose-dependent manner. IL-35 could ameliorate the symptoms of arthritis in the CIA mouse model in vivo and inhibited FLS proliferation while promoting FLS apoptosis in vitro, thereby exhibited the potential in inhibiting the progression of RA.  相似文献   

20.
Interleukin-17 is a T cell-derived proinflammatory cytokine. This cytokine is suspected to be involved in the development of rheumatoid arthritis (RA) because this cytokine expression is augmented in synovial tissues of RA patients. The pathogenic roles of IL-17 in the development of RA, however, still remain to be elucidated. In this study, effects of IL-17 deficiency on collagen-induced arthritis (CIA) model were examined using IL-17-deficient mice (IL-17(-/-) mice). We found that CIA was markedly suppressed in IL-17(-/-) mice. IL-17 was responsible for the priming of collagen-specific T cells and collagen-specific IgG2a production. Thus, these observations suggest that IL-17 plays a crucial role in the development of CIA by activating autoantigen-specific cellular and humoral immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号