首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gbeta and Ggamma subunit of the heterotrimeric G proteins form a functional dimer that is stable once assembled in vivo or in vitro. The requirements, mechanism, and specificity of dimer formation are still incompletely understood, but represent important biochemical processes involved in the specificity of cellular signaling through G proteins. Here, seven Gbeta and 12 FLAG-epitope-tagged Ggamma subunits were separately synthesized in vitro using a rabbit reticulocyte lysate expression system. The translation products were combined and dimers isolated by immunoprecipitation. Gbeta1 and Gbeta4 formed dimers with all Ggamma subunit isoforms, generally with Gbeta/Ggamma stoichiometries between 0.2:1 and 0.5:1. Gbeta5, Gbeta5L, and Gbeta3s did not form significant amounts of dimer with any of the gamma subunit isoforms. Gbeta2 and Gbeta3 formed dimers with selected Ggamma isoforms to levels intermediate between that of Gbeta1/Gbeta4 and Gbeta3s/Gbeta5/Gbeta5L. We also expressed selected Gbetagamma in HEK293 cells and measured PLCbeta2 activity. Gbetagamma dimer-dependent increases in IP3 production were seen with most Gbeta1, Gbeta2, and Gbeta5 combinations, indicating functional dimer expression in intact cells. These results define the complete set of G protein betagamma dimers that are formed using a single biochemical assay method and suggest that there are Gbeta isoform-specific factors in rabbit reticulocyte lysates that determine the efficacy of Gbetagamma dimer formation.  相似文献   

2.
PLC-epsilon was identified recently as a phosphoinositide-hydrolyzing phospholipase C (PLC) containing catalytic domains (X, Y, and C2) common to all PLC isozymes as well as unique CDC25- and Ras-associating domains. Novel regulation of this PLC isozyme by the Ras oncoprotein and alpha-subunits (Galpha(12)) of heterotrimeric G proteins was illustrated. Sequence analyses of PLC-epsilon revealed previously unrecognized PH and EF-hand domains in the amino terminus. The known interaction of Gbetagamma subunits with the PH domains of other proteins led us to examine the capacity of Gbetagamma to activate PLC-epsilon. Co-expression of Gbeta(1)gamma(2) with PLC-epsilon in COS-7 cells resulted in marked stimulation of phospholipase C activity. Gbeta(2) and Gbeta(4) in combination with Ggamma(1), Ggamma(2), Ggamma(3), or Ggamma(13) also activated PLC-epsilon to levels similar to those observed with Gbeta(1)-containing dimers of these Ggamma-subunits. Gbeta(3) in combination with the same Ggamma-subunits was less active, and Gbeta(5)-containing dimers were essentially inactive. Gbetagamma-promoted activation of PLC-epsilon was blocked by cotransfection with either of two Gbetagamma-interacting proteins, Galpha(i1) or the carboxyl terminus of G protein receptor kinase 2. Pharmacological inhibition of PI3-kinase-gamma had no effect on Gbeta(1)gamma(2)-promoted activation of PLC-epsilon. Similarly, activation of Ras in the action of Gbetagamma is unlikely, because a mutation in the second RA domain of PLC-epsilon that blocks Ras activation of PLC failed to alter the stimulatory activity of Gbeta(1)gamma(2). Taken together, these results reveal the presence of additional functional domains in PLC-epsilon and add a new level of complexity in the regulation of this novel enzyme by heterotrimeric G proteins.  相似文献   

3.
4.
Heterotrimeric G proteins play central roles in signal transduction of neurons and other cells. The variety of their alpha-, beta-, and gamma-subunits allows numerous combinations thereby confering specificity to receptor-G-protein-effector interactions. Using antisera against individual G-protein beta-subunits we here present a regional and subcellular distribution of Gbeta1, Gbeta2, and Gbeta5 in rat brain. Immunocytochemical specificity of the subtype-specific antisera is revealed in Sf9 cells infected with various G-protein beta-subunits. Since Gbeta-subunits together with a G-protein gamma-subunit affect signal cascades we include a distribution of the neuron-specific Ggamma2- and Ggamma3-subunits in selected brain areas. Gbeta1, Gbeta2, and Gbeta5 are preferentially distributed in the neuropil of hippocampus, cerebellum and spinal cord. Gbeta2 is highly concentrated in the mossy fibres of dentate gyrus neurons ending in the stratum lucidum of hippocampal CA3-area. High amounts of Gbeta2 also occur in interneurons innervating spinal cord alpha-motoneurons. Gbeta5 is differentially distributed in all brain areas studied. It is found in the pyramidal cells of hippocampal CA1-CA3 as well as in the granule cell layer of dentate gyrus and in some interneurons. In the spinal cord Gbeta5 in contrast to Gbeta2 concentrates around alpha-motoneurons. In cultivated mouse hippocampal and hypothalamic neurons Gbeta2 and Gbeta5 are found in different subcellular compartments. Whereas Gbeta5 is restricted to the perikarya, Gbeta2 is also found in processes and synaptic contacts where it partially colocalizes with the synaptic vesicle protein synaptobrevin. An antiserum recognizing Ggamma2 and Ggamma3 reveals that these subunits are less expressed in hippocampus and cerebellum. Presumably this antiserum specifically recognizes Ggamma2 and Ggamma3 in combinations with certain G alphas and/or Gbetas. The widespread but regionally and cellularly rather different distribution of Gbeta- and Ggamma2/3-subunits suggests that region-specific combinations of G-protein subunits mediate signal transduction in the central nervous system. The different subcellular distribution of Gbeta-subunits in cultivated neurons reflects that observed in tissue where Gbeta5 and Gbeta2 associate preferentially with the perikarya and the neuropil, respectively, and suggests an additional association of Gbeta2 with secretory vesicles.  相似文献   

5.
Gbetagamma dimer formation occurs early in the assembly of heterotrimeric G proteins. On nondenaturing (native) gels, in vitro translated, (35)S-labeled Ggamma subunits traveled primarily according to their pI and apparently were not associated with other proteins. In contrast, in vitro translated, (35)S-labeled Gbeta subunits traveled at a high apparent molecular mass (approximately 700 kDa) and co-migrated with the chaperonin CCT complex (also called TRiC). Different FLAG-Gbeta isoforms coprecipitated CCT/TRiC to a variable extent, and this correlated with the ability of the different Gbeta subunits to efficiently form dimers with Ggamma. When translated Ggamma was added to translated Gbeta, a new band of low apparent molecular mass (approximately 50 kDa) was observed, which was labeled by either (35)S-labeled Gbeta or Ggamma, indicating that it is a dimer. Formation of the Gbetagamma dimer was ATP-dependent and inhibited by either adenosine 5'-O-(thiotriphosphate) or aluminum fluoride in the presence of Mg(2+). This inhibition led to increased association of Gbeta with CCT/TRiC. Although Ggamma did not bind CCT/TRiC, addition of Ggamma to previously synthesized Gbeta caused its release from the CCT/TRiC complex. We conclude that the chaperonin CCT/TRiC complex binds to and folds Gbeta subunits and that CCT/TRiC mediates Gbetagamma dimer formation by an ATP-dependent reaction.  相似文献   

6.
The T-allele of a polymorphism (C825T) in the gene of the G-protein beta3-subunit is associated with a complex phenotype (hypertension, obesity, altered drug responses) and the occurrence of a splice variant termed Gbeta3s which lacks one of the seven WD-domains that compose Gbeta-proteins. Here, we analysed Gbetagamma dimer formation and Galpha activation by Gbeta3s, key functional characteristics of Gbeta-proteins. Cleavage protection assays frequently used to analyse Gbeta1gamma and Gbeta2gamma dimer formation failed for Gbeta3 and Gbeta3s, while in coprecipitation assays, dimerization of Gbeta3 and Gbeta3s with Ggamma5, Ggamma8(c) and Ggamma12 could be demonstrated. Upon expression of Gbeta3s in COS-7 and Sf9 insect cells, binding of GTPgammaS to Galpha-proteins induced by mastoparan-7 and the M(2) muscarinic acetylcholine receptor was facilitated in comparison with cells overexpressing wildtype Gbeta3, as indicated by twofold reduced agonist EC(50) values. Together, these results indicate that Gbeta3s is a biologically active Gbeta-protein that may mediate the enhanced signal transduction observed in cells with the 825T-allele.  相似文献   

7.
In this study, Gbeta specificity in the regulation of Gbetagamma-sensitive phosphoinositide 3-kinases (PI3Ks) and phospholipase Cbeta (PLCbeta) isozymes was examined. Recombinant mammalian Gbeta(1-3)gamma(2) complexes purified from Sf9 membranes stimulated PI3Kgamma lipid kinase activity with similar potency (10-30 nm) and efficacy, whereas transducin Gbetagamma was less potent. Functionally active Gbeta(5)gamma(2) dimers were purified from Sf9 cell membranes following coexpression of Gbeta(5) and Ggamma(2-His). This preparation as well as Gbeta(1)gamma(2-His) supported pertussis toxin-mediated ADP-ribosylation of Galpha(i1). Gbeta(1)gamma(2-His) stimulated PI3Kgamma lipid and protein kinase activities at nanomolar concentrations, whereas Gbeta(5)gamma(2-His) had no effect. Accordingly, Gbeta(1)gamma(2-His), but not Gbeta(5)gamma(2-His), significantly stimulated the lipid kinase activity of PI3Kbeta in the presence or absence of tyrosine-phosphorylated peptides derived from the p85-binding domain of the platelet derived-growth factor receptor. Conversely, both preparations were able to stimulate PLCbeta(2) and PLCbeta(1). However, Gbeta(1)gamma(2-His), but not Gbeta(5)gamma(2-His), activated PLCbeta(3). Experimental evidence suggests that the mechanism of Gbeta(5)-dependent effector selectivity may differ between PI3K and PLCbeta. In conclusion, these data indicate that Gbeta subunits are able to discriminate among effectors independently of Galpha due to selective protein-protein interaction.  相似文献   

8.
The Ca2+-activated adenylyl cyclase type VIII (AC-VIII) has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. It has not been clear whether Gi/o proteins and G-protein coupled receptors regulate the activity of AC-VIII. Here we show in intact mammalian cell system that AC-VIII is inhibited by mu-opioid receptor activation and that this inhibition is pertussis toxin sensitive. Moreover, we show that G(betagamma) subunits inhibit AC-VIII activity, while constitutively active alphai/o subunits do not. Different Gbeta isoforms varied in their efficacies, with Gbeta1gamma2 or Gbeta2gamma2 being more efficient than Gbeta3gamma2 and Gbeta4gamma2, while Gbeta5 (transfected with gamma2) had no effect. As for the Ggamma subunits, Gbeta1 inhibited AC-VIII activity in the presence of all gamma subunits tested except for gamma5 that had only a marginal activity. Moreover, cotransfection with proteins known to serve as scavengers of Gbetagamma dimers, or to reduce Gbetagamma plasma membrane anchorage, markedly attenuated the mu-opioid receptor-induced inhibition of AC-VIII. These results demonstrate that Gbetagamma (originating from agonist activation of these receptors) and probably not Galphai/o subunits are involved in the agonist inhibition of AC-VIII.  相似文献   

9.
10.
11.
We have used fluorescence resonance energy transfer and co-immunoprecipitation to analyze the interactions among the alpha, beta, and gamma1 subunits of the Arabidopsis heterotrimeric G protein. Using cyan and yellow fluorescent protein fusion constructs, we show that overexpressed Ggamma1 localizes to protoplast membranes, but Gbeta exhibits membrane localization only when the Ggamma1 protein is co-overexpressed. Overexpressed Galpha shows membrane localization unaccompanied by overexpression of either Gbeta or Ggamma1. We detect fluorescence resonance energy transfer between Gbeta and Ggamma1 in the absence of Galpha overexpression and between Galpha and Ggamma1 but only when all three subunits are co-overexpressed. Both Galpha and Gbeta are associated with large macromolecular complexes of approximately 700 kDa in the plasma membrane. Galpha is present in both large complexes and as free Galpha in plasma membranes from wild type plants. In plants homozygous for a null allele of the Gbeta gene, Galpha is associated with smaller complexes in the 200-400-kDa range, indicating that its presence in the large complex depends on association with Gbetagamma. Activation of the Galpha subunit with guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) results in partial dissociation of Galpha from the complex. Hydrogen peroxide (H2O2) promotes extensive dissociation of the Galpha complex but does not interfere with binding of GTPgammaS to purified recombinant Galpha, suggesting that reactive oxygen species affect the stability of the large complex but not the activity of Galpha itself.  相似文献   

12.
The signal transducing function of Gbeta(5) in brain is unknown. When studied in vitro Gbeta(5) is the only heterotrimeric Gbeta subunit known to interact with both Ggamma subunits and regulators of G protein signaling (RGS) proteins. When tested with Ggamma, Gbeta(5) interacts with other classical components of heterotrimeric G protein signaling pathways such as Galpha and phospholipase C-beta. We recently demonstrated nuclear expression of Gbeta(5) in neurons and brain (Zhang, J. H., Barr, V. A., Mo, Y., Rojkova, A. M., Liu, S., and Simonds, W. F. (2001) J. Biol. Chem. 276, 10284-10289). To gain further insight into the mechanism of Gbeta(5) nuclear localization, we generated a Gbeta(5) mutant deficient in its ability to interact with RGS7 while retaining its ability to bind Ggamma, and we compared its properties to the wild-type Gbeta(5). In HEK-293 cells co-transfection of RGS7 but not Ggamma(2) supported expression in the nuclear fraction of transfected wild-type Gbeta(5). In contrast the Ggamma-preferring Gbeta(5) mutant was not expressed in the HEK-293 cell nuclear fraction with either co-transfectant. The Ggamma-selective Gbeta(5) mutant was also excluded from the cell nucleus of transfected PC12 cells analyzed by laser confocal microscopy. These results define a requirement for RGS protein binding for Gbeta(5) nuclear expression.  相似文献   

13.
The betagamma subunits of G proteins modulate inwardly rectifying potassium (GIRK) channels through direct interactions. Although GIRK currents are stimulated by mammalian Gbetagamma subunits, we show that they were inhibited by the yeast Gbetagamma (Ste4/Ste18) subunits. A chimera between the yeast and the mammalian Gbeta1 subunits (ymbeta) stimulated or inhibited GIRK currents, depending on whether it was co-expressed with mammalian or yeast Ggamma subunits, respectively. This result underscores the critical functional influence of the Ggamma subunits on the effectiveness of the Gbetagamma complex. A series of chimeras between Ggamma2 and the yeast Ggamma revealed that the C-terminal half of the Ggamma2 subunit is required for channel activation by the Gbetagamma complex. Point mutations of Ggamma2 to the corresponding yeast Ggamma residues identified several amino acids that reduced significantly the ability of Gbetagamma to stimulate channel activity, an effect that was not due to improper association with Gbeta. Most of the identified critical Ggamma residues clustered together, forming an intricate network of interactions with the Gbeta subunit, defining an interaction surface of the Gbetagamma complex with GIRK channels. These results show for the first time a functional role for Ggamma in the effector role of Gbetagamma.  相似文献   

14.
Phosducin-like protein (PhLP) is a widely expressed binding partner of the G protein betagamma subunit dimer (Gbetagamma). However, its physiological role is poorly understood. To investigate PhLP function, its cellular expression was blocked using RNA interference, resulting in inhibition of Gbetagamma expression and G protein signaling. This inhibition was caused by an inability of nascent Gbetagamma to form dimers. Phosphorylation of PhLP at serines 18-20 by protein kinase CK2 was required for Gbetagamma formation, while a high-affinity interaction of PhLP with the cytosolic chaperonin complex appeared unnecessary. PhLP bound nascent Gbeta in the absence of Ggamma, and S18-20 phosphorylation was required for Ggamma to associate with the PhLP-Gbeta complex. Once Ggamma bound, PhLP was released. These results suggest a mechanism for Gbetagamma assembly in which PhLP stabilizes the nascent Gbeta polypeptide until Ggamma can associate, resulting in membrane binding of Gbetagamma and release of PhLP to catalyze another round of assembly.  相似文献   

15.
P-Rex1 is a specific guanine nucleotide exchange factor (GEF) for Rac, which is present in high abundance in brain and hematopoietic cells. P-Rex1 is dually regulated by phosphatidylinositol (3,4,5)-trisphosphate and the Gbetagamma subunits of heterotrimeric G proteins. We examined which of the multiple G protein alpha and betagamma subunits activate P-Rex1-mediated Rac guanine nucleotide exchange using pure, recombinant proteins reconstituted into synthetic lipid vesicles. AlF(-)(4) activated G(s),G(i),G(q),G(12), or G(13) alpha subunits were unable to activate P-Rex1. Gbetagamma dimers containing Gbeta(1-4) complexed with gamma(2) stimulated P-Rex1 activity with EC(50) values ranging from 10 to 20 nm. Gbeta(5)gamma(2) was not able to stimulate P-Rex1 GEF activity. Dimers containing the beta(1) subunit complexed with a panel of different Ggamma subunits varied in their ability to stimulate P-Rex1. The beta(1)gamma(3), beta(1)gamma(7), beta(1)gamma(10), and beta(1)gamma(13HA) dimers all activated P-Rex1 with EC(50) values ranging from 20 to 38 nm. Dimers composed of beta(1)gamma(12) had lower EC(50) values (approximately 112 nm). The farnesylated gamma(11) subunit is highly expressed in hematopoietic cells; surprisingly, dimers containing this subunit (beta(1)gamma(11)) were also less effective at activating P-Rex1. These findings suggest that the composition of the Gbetagamma dimer released by receptor activation may differentially activate P-Rex1.  相似文献   

16.
BACKGROUND: Gbeta proteins have traditionally been thought to complex with Ggamma proteins to function as subunits of G protein heterotrimers. The divergent Gbeta(5) protein, however, can bind either Ggamma proteins or regulator of G protein signaling (RGS) proteins that contain a G gamma-like (GGL) domain. RGS proteins inhibit G protein signaling by acting as Galpha GTPase activators. While Gbeta(5) appears to bind RGS proteins in vivo, its association with Ggamma proteins in vivo has not been clearly demonstrated. It is unclear how Gbeta(5) might influence RGS activity. In C. elegans there are exactly two GGL-containing RGS proteins, EGL-10 and EAT-16, and they inhibit Galpha(o) and Galpha(q) signaling, respectively. RESULTS: We knocked out the gene encoding the C. elegans Gbeta(5) ortholog, GPB-2, to determine its physiological roles in G protein signaling. The gpb-2 mutation reduces the functions of EGL-10 and EAT-16 to levels comparable to those found in egl-10 and eat-16 null mutants. gpb-2 knockout animals are viable, and exhibit no obvious defects beyond those that can be attributed to a reduction of EGL-10 or EAT-16 function. GPB-2 protein is nearly absent in eat-16; egl-10 double mutants, and EGL-10 protein is severely diminished in gpb-2 mutants. CONCLUSIONS: Gbeta(5) functions in vivo complexed with GGL-containing RGS proteins. In the absence of Gbeta(5), these RGS proteins have little or no function. The formation of RGS-Gbeta(5) complexes is required for the expression or stability of both the RGS and Gbeta(5) proteins. Appropriate RGS-Gbeta(5) complexes regulate both Galpha(o) and Galpha(q) proteins in vivo.  相似文献   

17.
Baculoviral-mediated expression in insect cells has become a method of choice where high-level protein expression is desired and where expression in Escherichia coliform (E. coli.) is unsuitable. Genes of interest are inserted into the baculoviral genome of Autographa californica nuclear polyhedrosis virus (AcNPV) under the extremely strong, but very late polyhedron gene (PolH). The preferred host lines are derived from Spodoptera frugiperda (Sf9 or Sf21) or Tricoplusia ni (High Five, Invitrogen). Viral expression in insect cells is commonly used in the signal transduction field, due to the more than satisfactory capacity to express membrane proteins. However, co-association and/or co-purification of contaminating endogenous host G protein subunits, for example, may potentially threaten the functional and structural homogeneity of membrane preparations. The undefined G protein composition is complicated by the limited sequence data of either the S. frugiperda or Tricoplusia ni genomes. Here we report the isolation of cDNAs encoding two members of the heterotrimeric G protein family, Gbeta (Tn-Gbeta) and Ggamma (Tn-Ggamma), from Tricoplusia ni. Tn-Gbeta shares approximately 90% amino acid sequence identity with Gbeta from Drosophila melanogaster and 84% identity with mammalian Gbeta (human Gbeta1). Tn-Ggamma shares approximately 71% amino acid identity with D. melanogaster Ggamma1 and 42% identity with mammalian Ggamma (human Ggamma2). Tn-Gbetagamma is also functionally similar to mammalian Gbeta1gamma2 by virtue of their capacity to form a complex with mammalian Galpha subunits, support G-protein-dependent agonist binding to a mammalian G protein-coupled receptor (beta2-adrenergic receptor) and directly regulate effectors such as adenylyl cyclase.  相似文献   

18.
19.
Gbetagamma subunits interact directly and activate G protein-gated Inwardly Rectifying K(+) (GIRK) channels. Little is known about the identity of functionally important interactions between Gbetagamma and GIRK channels. We tested the effects of all mammalian Gbeta subunits on channel activity and showed that whereas Gbeta1-4 subunits activate heteromeric GIRK channels independently of receptor activation, Gbeta5 does not. Gbeta1 and Gbeta5 both bind the N and C termini of the GIRK1 and GIRK4 channel subunits. Chimeric analysis between the Gbeta1 and Gbeta5 proteins revealed a 90-amino acid stretch that spans blades two and three of the seven-propeller structure and is required for channel activation. Within this region, eight non-conserved amino acids were critical for the activity of Gbeta1, as mutation of each residue to its counterpart in Gbeta5 significantly reduced the ability of Gbeta1 to stimulate channel activity. In particular, mutation of residues Ser-67 and Thr-128 to the corresponding Gbeta5 residues completely abolished Gbeta1 stimulation of GIRK channel activity. Mapping these functionally important residues on the three-dimensional structure of Gbeta1 shows that Ser-67, Ser-98, and Thr-128 are the only surface accessible residues. Galpha(i)1 interacts with Ser-98 but not with Ser-67 and Thr-128 in the heterotrimeric Galphabetagamma structure. Further characterization of the three mutant proteins showed that they fold properly and interact with Ggamma2. Of the three identified functionally important residues, the Ser-67 and Thr-128 Gbeta mutants significantly inhibited basal currents of a channel point mutant that displays Gbetagamma-mediated basal but not agonist-induced currents. Our findings indicate that the presence of Gbeta residues that do not interact with Galpha are involved in Gbetagamma interactions in the absence of agonist stimulation.  相似文献   

20.
HEK293 cells were transfected with cDNAs for Gbeta1(W332A) [a mutant Gbeta1], Ggamma2, and inward rectifier K+ channels (Kir3.1/Kir3.2). Application of Gbeta1gamma2 protein to these cells activated the K+ channels only slightly. When mu-opioid receptors and Kir3.1/Kir3.2 were transfected, application of a mu-opioid agonist induced a Kir3 current. However, co-expression of Gbeta1(W332A) suppressed this current. Most likely, Gbeta1(W332A) inhibited the action of the endogenous Gbeta. Such a dominant negative effect of Gbeta1(W332A) was also observed in neuronal Kir3 channels in locus coeruleus. The mutant, Gbeta1(W332A) protein, although inactive, retains its ability to bind Kir3 and prevents the wild type Gbeta from activating the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号