首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent theoretical and experimental work provides clear evidence that biodiversity loss can have profound impacts on functioning of natural and managed ecosystems and the ability of ecosystems to deliver ecological services to human societies. Work on simplified ecosystems in which the diversity of a single trophic level is manipulated shows that diversity can enhance ecosystem processes such as primary productivity and nutrient retention. Theory also strongly suggests that biodiversity can act as biological insurance against potential disruptions caused by environmental changes. However, these studies generally concern a single trophic level, primary producers for the most part. Changes in biodiversity also affect ecosystem functioning through trophic interactions. Here we review, through the analysis of a simple ecosystem model, several key aspects inherent in multitrophic systems that may strongly affect the relationship between diversity and ecosystem processes. Our analysis shows that trophic interactions have a strong impact on the relationships between diversity and ecosystem functioning, whether the ecosystem property considered is total biomass or temporal variability of biomass at the various trophic levels. In both cases, food-web structure and trade-offs that affect interaction strength have major effects on these relationships. Multitrophic interactions are expected to make biodiversity–ecosystem functioning relationships more complex and non-linear, in contrast to the monotonic changes predicted for simplified systems with a single trophic level.  相似文献   

2.
《Ecological Engineering》2007,29(3):260-271
Extensive vegetated roofs are becoming popular as a way to improve the environmental quality of cities. As more vegetated roofs are installed, there is a need for knowledge pertaining to maintenance and impact vegetated roofs have on stormwater quality. Our study investigated nutrient runoff, substrate nutrient storage and plant uptake following fertilisation of vegetation mats, shoot-established vegetation systems and unvegetated substrate using three levels of fertiliser applied as either controlled release fertiliser (CRF), or as a combination of CRF and conventional fertiliser. Conventional fertilisers caused high nutrient concentrations in the runoff water. Concentrations decreased during the duration of the experiment but at the end of the experiment they were still higher than after fertilisation with CRF. Conventional fertiliser also increased the total nutrient runoff. Vegetation system type influenced nutrient runoff and fertilisation of old vegetation mats reduced the risk for nutrient leaching compared to fertilisation of newly established surfaces. This can be attributed to temporary storage in substrate and increased uptake by vegetation. The temporary storage of nutrients following fertilisation indicated that there might be a risk for prolonged leaching. Thus, addition of conventional fertilisers or nutrient-rich material during production can reduce stormwater quality.  相似文献   

3.
Problems and concerns in relation to the use of inorganic fertilisers, irrigation, herbicides and pesticides have led to the search for alternative strategies to combat limiting soil nutrient and water levels and the effect of weeds and pests on crops. Greater utilisation of microorganisms in agricultural systems could possibly allow reductions in the use of inorganic fertilisers, water, herbicides and pesticides with no impact on crop yield. Positive plant microbial interactions which are currently under study are considered here.  相似文献   

4.
Linking soil process and microbial ecology in freshwater wetland ecosystems   总被引:1,自引:0,他引:1  
Soil microorganisms mediate many processes such as nitrification, denitrification, and methanogenesis that regulate ecosystem functioning and also feed back to influence atmospheric chemistry. These processes are of particular interest in freshwater wetland ecosystems where nutrient cycling is highly responsive to fluctuating hydrology and nutrients and soil gas releases may be sensitive to climate warming. In this review we briefly summarize research from process and taxonomic approaches to the study of wetland biogeochemistry and microbial ecology, and highlight areas where further research is needed to increase our mechanistic understanding of wetland system functioning. Research in wetland biogeochemistry has most often been focused on processes (e.g., methanogenesis), and less often on microbial communities or on populations of specific microorganisms of interest. Research on process has focused on controls over, and rates of, denitrification, methanogenesis, and methanotrophy. There has been some work on sulfate and iron transformations and wetland enzyme activities. Work to date indicates an important process level role for hydrology and soil nutrient status. The impact of plant species composition on processes is potentially critical, but is as yet poorly understood. Research on microbial communities in wetland soils has primarily focused on bacteria responsible for methanogenesis, denitrification, and sulfate reduction. There has been less work on taxonomic groups such as those responsible for nitrogen fixation, or aerobic processes such as nitrification. Work on general community composition and on wetland mycorrhizal fungi is particularly sparse. The general goal of microbial research has been to understand how microbial groups respond to the environment. There has been relatively little work done on the interactions among environmental controls over process rates, environmental constraints on microbial activities and community composition, and changes in processes at the ecosystem level. Finding ways to link process-based and biochemical or gene-based assays is becoming increasingly important as we seek a mechanistic understanding of the response of wetland ecosystems to current and future anthropogenic perturbations. We discuss the potential of new approaches, and highlight areas for further research.  相似文献   

5.
Increasing concern about the potential negative environmental impact of chemical fertilisers used in urban landscapes has provided impetus to develop organic fertilisers. However, little is known about the effect of organic fertilisers on turfgrass quality, growth and stress resistance. This study compared the effect of 11 organic fertilisers, applied at manufacturer's recommended rates, on greening quality, shoot and root growth, and shoot nutrient (an indication of nutrient uptake) and alkaloid content (an indication of insect resistance) in endophytic (infected with the fungus Neotyphodium coenophialum) tall fescue in the greenhouse. We measured turfgrass greening quality on a 1–9 scale weekly (9 being the highest), shoot and root growth monthly, and shoot contents of macro- and micronutrients and of various alkaloids at the end of 4 months. The results show that Corn Gluten and Cockadoodle Doo produce the highest turfgrass greening quality and shoot growth. Nature's Touch with enzymes enhanced root growth, and thus resulted in high root:shoot ratio, especially in third and fourth months after application. Compared with the most commonly used chemical fertiliser, Scott's Turf Builder, the organic fertilisers Cockadoodle Doo, Corn Gluten and Nature's Touch with enzymes generally resulted in better turf greening quality. Although Cockadoodle Doo, Vigoro and Scott's Turf Builder resulted in higher macronutrient contents in turfgrass shoots, there was no significant correlation between the nutrient contents in the fertilisers and in the shoots four months after application. Significant differences were found for all measured alkaloids in turfgrass shoots among the 13 treatments, and these differences varied with fertiliser. Overall, organic fertilisers produced higher turfgrass greening quality, root and shoot growth and insect resistance capacity (alkaloid content) compared with the chemical fertiliser, Scott's Turf Builder. On the basis of the high to excellent turfgrass greening quality ratings, root:shoot ratio, shoot nutrient and alkaloid contents in this study, we conclude that Cockadoodle Doo, Vigoro and Nature's Touch with enzymes are relatively superior organic fertilisers.  相似文献   

6.
The rhizosphere differs from the bulk soil in a range of biochemical, chemical and physical processes that occur as a consequence of root growth, water and nutrient uptake, respiration and rhizodeposition. These processes also affect microbial ecology and plant physiology to a considerable extent. This review concentrates on two features of this unique environment: rhizosphere geometry and heterogeneity in both space and time. Although it is often depicted as a soil cylinder of a given radius around the root, drawing a boundary between the rhizosphere and bulk soil is an impossible task because rhizosphere processes result in gradients of different sizes. For instance, because of diffusional constraints, root uptake can result in a depletion zone extending <1 mm for phosphate to several centimetres for nitrate, while respiration may affect the bulk of the soil. Rhizosphere processes are responsible for spatial and temporal heterogeneities in the soil, although these are sometimes difficult to distinguish from intrinsic soil heterogeneity. A further complexity is that these processes are regulated by plants, microbial communities and soil constituents, and their many interactions. Novel in situ techniques and modelling will help in providing a holistic view of rhizosphere functioning, which is a prerequisite for its management and manipulation.  相似文献   

7.
植物与土壤微生物在调控生态系统养分循环中的作用   总被引:14,自引:0,他引:14       下载免费PDF全文
陆地生态系统的地上、地下是相互联系的。植物与土壤微生物作为陆地生态系统中的重要组成部分, 它们之间的相互作用是生态系统地上、地下结合的重要纽带。该文首先介绍了植物在养分循环中对营养元素的吸收、积累和归还等作用, 阐述了土壤微生物对养分有效性及土壤质量具有重要的作用。其次, 重点综述了植物与土壤微生物之间相互依存、相互竞争的关系。植物通过其凋落物与分泌物为土壤微生物提供营养, 土壤微生物作为分解者提供植物可吸收的营养元素, 比如共生体菌根真菌即可使植物根与土壤真菌达到互惠。然而, 植物的养分吸收与微生物的养分固持同时存在, 因而两者之间存在对养分的竞争。通过植物多样性对土壤微生物多样性的影响分析, 以及土壤微生物直接或间接作用于植物多样性和生产力的分析, 探讨了植物物种多样性与土壤微生物多样性之间的内在联系。针对当前植物与土壤微生物对养分循环的调控机制的争论, 提出植物凋落物是调节植物与土壤微生物养分循环的良好媒介, 植物与土壤微生物的共同作用对维持整个生态系统的稳定性具有重要意义。也指出了目前在陆地生态系统地上、地下研究中存在的不足和亟待解决的问题。  相似文献   

8.
9.
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long‐term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well‐documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties.  相似文献   

10.
林木细根寿命及其影响因子研究进展   总被引:21,自引:6,他引:21       下载免费PDF全文
 细根周转要消耗大量的C,它影响森林生态系统C分配格局与过程和养分循环,对生态系统生产力具有重要意义。细根的周转取决于细根的寿命,细根寿命越短,周转越快,根系对C的消耗也越多。大量研究表明,细根的寿命与地上部分C向根系供应的多少有密切关系,同时也与细根直径大小、土壤中N和水分的有效性、土壤温度以及根际周围的土壤动物和微生物的活动有关。本文综述了国外近年来在该领域里的研究进展,特别是对控制细根寿命的机理和主要影响因子进行了评述,目的是引起国内研究者的关注,促进我国根系生态学的研究与发展。  相似文献   

11.
Subsoil root activity in tree-based cropping systems   总被引:6,自引:2,他引:4  
An increasing number of studies indicate that (i) nutrient and water resources can be abundant in the subsoil and (ii) trees have deep root systems that can possibly reach these resources. It is less clear whether subsoil resources are actually improving water and nutrient status of tree-based cropping systems and whether they are significantly increasing crop production and yield. To answer such a question, the distribution of nutrient and water uptake by trees needs to be quantified. So-called `root activity distributions' give valuable information about actual subsoil use by trees whereas studies on root length or mass distributions do not often correlate with uptake distributions. Despite the usually lower relative root activity in the subsoil compared to the topsoil per unit soil, the large volume of subsoil in comparison to mostly shallow topsoil is an important resource for crop nutrient and water uptake. The present study compares published root activity distributions using the model Activity=A max(1–k depth). The obtained regression constants k of 0.91–0.99 determined in this publication reflect the values computed by an earlier published survey for root biomass ranging from tundra to those of temperate forest biomes. Thus, tree crops can have shallow root activity and 75% of their total root activity in the first 0.1 m of soil, or very deep root activity with more than 90% below 0.1 m. Neither environmental factors (i.e., climate and soil properties available from these publications) nor plant species explain differences of root activity distributions with depth. The deepest root activity is found for fruit trees such as citrus, guava and mango. Shaded crops such as coffee and cacao tend to have shallower root activity than fruit trees. Monocots including oil palm, coconut or banana have root activity that can be both deep and shallow. Regional and temporal variations of subsoil root activity for the same tree species are significant and generally larger than differences between species. Root activity patterns of tree crops appear to be sufficiently flexible to allow for subsoil resource use. Consequently, management such as pruning, fertilization, liming and irrigation are shown to significantly affect subsoil root activity.  相似文献   

12.
Here, a conceptual model is presented for the development of Phytophthora disease in pedunculate oak. The model is presented using the causal loop diagram tool and gives an overview of how various abiotic and biotic factors, such as soil moisture, nutrient availability and mycorrhizal colonization, may affect the reproduction and the infective capacity of soil-borne Phytophthora species, the susceptibility of the host and subsequent disease development. It is suggested that the link between the root damage caused by Phytophthora species and overall tree vitality is in the assimilation and allocation of carbon within the plants. The potential impact of environmental factors on these processes is discussed. The model is presented with reference to scenarios related to variation in soil moisture and nutrient availability. The need for species-specific validation of the model and the implications of the model are discussed.  相似文献   

13.
植物根系养分捕获塑性与根竞争   总被引:7,自引:0,他引:7       下载免费PDF全文
王鹏  牟溥  李云斌 《植物生态学报》2012,36(11):1184-1196
为了更有效地从土壤中获取养分, 植物根系在长期的进化与适应中产生了一系列塑性反应, 以响应自然界中广泛存在的时空异质性。同时, 植物根系的养分吸收也要面对来自种内和种间的竞争。多种因素都会影响植物根竞争的结果, 包括养分条件、养分异质性的程度、根系塑性的表达等。竞争会改变植物根系的塑性反应, 比如影响植物根系的空间分布; 植物根系塑性程度差异也会影响竞争。已有研究发现根系具有高形态塑性和高生理塑性的植物在长期竞争过程中会占据优势。由于不同物种根系塑性的差异, 固定的对待竞争的反应模式在植物根系中可能并不存在, 其响应随竞争物种以及土壤环境因素的变化而变化。此外, 随着时间变化, 根系塑性的反应及其重要性也会随之改变。植物对竞争的反应可能与竞争个体之间的亲缘关系有关, 有研究表明亲缘关系近的植物可能倾向于减小彼此之间的竞争。根竞争对植物的生存非常重要, 但目前还没有研究综合考虑植物的各种塑性在根竞争中的作用。另外根竞争对群落结构的影响尚待深入的研究。  相似文献   

14.
Ectomycorrhizal (ECM) fungi are obligate symbionts of dominant vascular plants, liverworts and hornworts. There are reports of about 20,000 to 25,000 ECM fungi that promote plant growth by facilitating enhanced water and nutrient absorption, and provide tolerance to environmental stresses. These below-ground fungi play a key role in terrestrial ecosystems as they regulate plant diversity, nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Because ECM fungi are obligate root symbionts, host plant can have a strong effect on ECM species richness and community composition. The biogeographic pattern and detailed functioning and regulation of these mycorrhizosphere processes are still poorly understood and require detailed study. More recent researches have placed emphasis on a wider, multifunctional perspective, including the effects of ectomycorrhizal symbiosis on plant and microbial communities, and on ecosystem processes. Over the years the main focus in ECM research has been on the study of diversity and specificity of ECM strains, the role of ECM in regeneration of degraded ecosystem, the growth and establishment of seedlings through nutrient acquisition and the mediation of plant responses to various types of stress. In this review, recent progresses in ectomycorrhizal biology are presented, especially the potential role of ECM symbioses in resistance or tolerance to various biotic and abiotic stresses, and in maintinance of plant diversity for proper ecosystem functioning.  相似文献   

15.
In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant–plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.  相似文献   

16.
Phosphate availability regulates root system architecture in Arabidopsis   总被引:31,自引:0,他引:31  
Plant root systems are highly plastic in their development and can adapt their architecture in response to the prevailing environmental conditions. One important parameter is the availability of phosphate, which is highly immobile in soil such that the arrangement of roots within the soil will profoundly affect the ability of the plant to acquire this essential nutrient. Consistent with this, the availability of phosphate was found to have a marked effect on the root system architecture of Arabidopsis. Low phosphate availability favored lateral root growth over primary root growth, through increased lateral root density and length, and reduced primary root growth mediated by reduced cell elongation. The ability of the root system to respond to phosphate availability was found to be independent of sucrose supply and auxin signaling. In contrast, shoot phosphate status was found to influence the root system architecture response to phosphate availability.  相似文献   

17.
Previous studies relating to the effects of fire on nutrient cycling in Australian native forests are reviewed. It is apparent that: (a) the action of fire on soil fertility is likely to be important in affecting the functioning of Australian plant communities, (b) work to date only gives a guide as to the nature and magnitude of the effects of fire on some nutrient pools and nutrient cycling processes, but has not established the significance of such effects to the nutrient budget of entire forest systems, or established the links between fire, soil fertility and the functioning of forest communities. The difficulties associated with studying and predicting the long-term effects of fire on the fertility of forest soils are discussed. A new methodology applicable to study of the interaction between fire and plant nutrition is advocated, and is based on examination of the effects of fire on nutrient stores and flux rates in the soil-litter compartment of the forest. This approach emphasizes the use of changes in rates of nutrient cycling processes as an index of the-effects of disturbances such as fire on a forest ecosystem. The application of the methodology in a study of the effects of repeated low-intensity prescribed burning on soil fertility is discussed briefly.  相似文献   

18.

Background

Crops require adequate nutrition for the production of food, fibre and fuel, but soil conditions often limit the ability of crops to acquire mineral nutrients. To address this, mineral nutrients can be applied as inorganic or organic fertilisers to the soil or as liquid fertilisers to foliage. However, production and use of fertilisers can have negative environmental impacts. The articles in this Special Issue illustrate a number of ways to improve nutrient acquisition from the soil and their delivery through foliar application.

Scope

Articles highlighted here include those that discuss ways by which to assess a crop’s requirement for additional mineral elements, ways by which minerals can be supplied more effectively to crops both through roots and shoots, and ways by which the crop itself can be enhanced to acquire more mineral elements.

Conclusions

It is apparent from the information contained in this Special Issue that to improve the ability of crops to acquire mineral elements, a number of strategies are available. However, the success of any one intervention is dependent on how these strategies interact with the environment in which they are deployed and the suitability of the management system for the specific intervention.  相似文献   

19.
Nitric oxide (NO) is essential for plant growth and development, as well as interactions with abiotic and biotic environments. Its importance for multiple functions in plants means that tight regulation of NO concentrations is required. This is of particular significance in roots, where NO signalling is involved in processes, such as root growth, lateral root formation, nutrient acquisition, heavy metal homeostasis, symbiotic nitrogen fixation and root–mycorrhizal fungi interactions. The NO signal can also be produced in high levels by microbial processes in the rhizosphere, further impacting root processes. To explore these interesting interactions, in the present review, we firstly summarize current knowledge of physiological processes of NO production and consumption in roots and, thereafter, of processes involved in NO homeostasis in root cells with particular emphasis on root growth, development, nutrient acquisition, environmental stresses and organismic interactions.  相似文献   

20.
根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号