首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tautomerism of uracil, 5-fluorouracil, and thymine has been investigated in the gas phase and in solution. Electron correlation effects were included in ab initio computations at the MP2 level, and DFT calculations were performed using the B3LYP level. Full geometry optimizations were conducted at the HF/6-31G**, HF/6-31+G**, and B3LYP/6-31+G** levels. Single-point MP2/6-31+G** calculations were performed on the HF/6-31+G** optimized geometries. The influence of the solvent was examined from self-consistent reaction field calculations performed with )=2.21 (1,4-dioxane) and )=78.54 (water). The calculated relative free energies ((G) indicate that substitution of uracil at the position group does not change the relative free energy order of the uracil tautomers in the gas phase and in 1,4-dioxane (except at the MP2 level) whereas this ordering changes in water. Attachment of a fluorine atom changes the relative free energy order of uracil tautomers in the gas phase and in solution.  相似文献   

2.
The tautomerism and intramolecular hydrogen shifts of 5-amino-tetrazole in the gas phase were studied in the present work. The minimum energy path (MEP) information of 5-amino-tetrazole was obtained at the CCSD(T)/6–311G**//MP2/6–311G** level of theory. The six possible tautomers of 1H, 4H-5-imino-tetrazole (a), 1H-5-amino-tetrazole (b), 2H-5-amino-tetrazole (c), 1H, 2H-5-imino-tetrazole (d), the mesoionic form (e) and 2H, 4H-5-imino-tetrazole (f) were investigated. Among these tautomers, there are 2 amino- forms, 3 imino- forms, and 1 mesoionic structure form. In all the tautomers, 2-H form (c) is the energetically preferred one in the gas phase. In the imino- tautomers, the energy value of the compound d is similar as that of the compound f but it is higher than the energy value of the compound a. The potential energetic surface (PES) and kinetics for five reactions have been investigated. Reaction 2 (bc) was hydrogen shifts only in which the 1-H and 2-H rearrangement. This means that the reaction 2 (bc) is energetically favorable having an activation barrier of 45.66 kcal·mol−1 and the reaction energies (ΔE) is only 2.67 kcal·mol−1. However, the reaction energy barrier for tautomerism of reaction 1 (be) is 54.90 kcal·mol−1. Reaction 1 (ba), reaction 3 (cd), and reaction 5 (cf) were amino- →imino- tautomerism reactions. The energy barriers of amino- →imino- tautomerism reactions required are 59.39, 65.57, 73.61 kcal·mol−1 respectively in the gas phase. The calculated values of rate constants using TST, TST/Eckart, CVT, CVT/SCT and CVT/ZCT methods using the optimized geometries obtained at the MP2/6–311G** level of theory show the variational effects are small over the whole temperature range, while tunneling effects are big in the lower temperature range for all tautomerism reactions. Graphical Abstract Figure (DOC 45.0 KB)  相似文献   

3.
The structural stability of halocarbonyl azides CXO-NNN (X=F, Cl and Br) was investigated by DFT and MP2 calculations using the 6-311++G** basis set. From the calculations, the molecules were found to have an s-cis<--> s-trans conformational equilibrium with cis being the lower -energy form. Full energy optimizations were carried out for the transition states and the minima at the B3LYP/6 -311++G** and MP2/6 -311++G** levels, from which the rotational barriers were calculated to be of the order 8-10 kcal x mol(-1). The vibrational frequencies were computed at the DFT -B3LYP level and the vibrational assignments for the normal modes of the stable conformers were made on the basis of normal coordinate calculations.  相似文献   

4.
Calculations using different quantum mechanical methods including semiempirical (MNDO,AM1 and PM3), ab initio (RHF and MP2 calculations using the 6-311G and 6-311++G** basis sets), and density functional theory (LSDA, BP, MIXBP and B3LYP, i.e., B3LYP/6-311+G**//B3LYP/6-31G*) have been performed on the thermal fragmentation of cyclopropanone to ethylene and carbon monoxide. All RHF calculations predict a concerted single step mechanism for this conversion. The estimated activation energies vary from 34.4 to 54.6 kcal·mol-1, mainly localized around 37±2 kcal·mol-1, depending on the method. Whereas the calculated RHF reaction energies also varied from 14.5 to -33.3 kcal·mol-1, the B3LYP/6-311+G**//B3LYP/6-31G* method predicts the experimental value (-17.7 kcal·mol-1) within experimental uncertainties. Remarkably, semiempirical AM1 and PM3 methods and simple DFT calculations, LSDA, predict comparable results to the more advanced methods. UHF ab initio calculations predict the same single step mechanism, whereas a multistep biradical mechanism with an unrealistically low activation energy is favored by the semiempirical methods. Structures of the activated complex of the single step mechanism, estimated by different methods, are very similar and consistent with a nonlinear cheletropic [2s + 2a] reaction, as predicted by the orbital symmetry rules and earlier EHT calculations.Electronic Supplementary Material available.  相似文献   

5.
B3LYP/6-31G(d,p) level of theory is used to carry out a detailed gas phase conformational analysis of non-ionized (neutral) pyrrolysine molecule about its nine internal back-bone torsional angles. A total of 13 minima are detected from potential energy surface exploration corresponding to the nine internal back-bone torsional angles. These minima are then subjected to full geometry optimization and vibrational frequency calculations at B3LYP/6-31++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. Single point calculations are carried out at B3LYP/6-311++G(d,p) and MP2/6-31++G(d,p) levels. Six types of intramolecular H-bonds, viz. O…H–O, N…H-O, O…H–N, N…H–N, O…H–C and N…H–C, are found to exist in the pyrrolysine conformers; all of which contribute to the stability of the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of intramolecular H-bond interactions in the conformers.  相似文献   

6.
Quantum chemistry methods (ab initio, RHF + MP2(FULL), 6-31G** basis set) were used to study proton migration in tyrosine stacks mimicking the proton channel in tubulin and other proteins. When bound to guanosine-5'-triphosphate, Mg2+ favors the dissociation of water in its first coordination shell, thus initiating subsequent proton shifts in the tyrosine chain composed of spatially remote tyrosine residues of tubulin. The process appears to be thermodynamically allowed, delta G298 < 0, with a potential barrier along the proton shift of no more than 0.75 kcal/mol. The exposure to external electrical field of low intensity, which simulates the electric properties of tubulin, promotes proton migration over long distances.  相似文献   

7.
The DFT-B3LYP and MP2 methods with 6-311G** and 6-311++G** basis sets have been applied to study the complexation energies of the host-guest complexes between the cone calix[4]arene and Li+ or Na+ on the B3LYP optimized geometries. A comparison of the complexation energies obtained from the MP2(full) with those from MP2(fc) method is also carried out. The result shows that it is essential to introduce the diffuse basis set into the geometry optimizations and complexation energy calculations of the alkali-metal cation-π interaction complexes of calix[4]arene, and the D e values show a maximum of 21.13 kJ mol−1 (14.45% of relative error) between the MP2(full)/6-311++G** and MP2(fc)/6-311++G** method. For Li+ cation, the complexation is mainly energetically stabilized by the lower rim/cation (namely O–Li+) interaction. However, binding energies and NBO analyses confirm that Na+ cation prefers to enter the calix[4]arene cavity and the cation-π interaction is predominant, which contradicts the previous low-level theoretical studies. Furthermore, the complexation with Li+ is preferred over that with Na+ by at least 12.70 kJ mol−1 at MP2(full)/6-311++G**//B3LYP/6-311++G** level.   相似文献   

8.
The complex N-glycan structures on glycoproteins play important roles in cell adhesion and recognition events in metazoan organisms. A critical step in the biosynthetic pathway leading from high mannose to these complex structures includes the transfer of N-acetylglucosamine (GlcNAc) to a mannose residue by the inverting N-acetylglucosaminyltransferase I (GnT-I). The catalytic mechanism of this enzymatic reaction is explored herein using DFT quantum chemical methods. The computational model used to follow the reaction is based on the X-ray crystallographic structure of GnT-I and contains 127 atoms that represent fragments of residues critical for the substrate binding and catalysis. The mechanism of the catalytic reaction was monitored by means of a 2D potential energy map calculated as a function of predefined reaction coordinates at the B3LYP/6-31G** level. This potential energy surface revealed one transition state associated with a reaction pathway following a concerted mechanism. The reaction barrier was estimated, and the structure of the transition state was characterized at the B3LYP/6-311++G**// B3LYP/6-31G** level.  相似文献   

9.
Extensive DFT and ab initio calculations were performed to characterize the conformational space of pamidronate, a typical pharmaceutical for bone diseases. Mono-, di- and tri-protic states of molecule, relevant for physiological pH range, were investigated for both canonical and zwitterionic tautomers. Semiempirical PM6 method were used for prescreening of the single bond rotamers followed by geometry optimizations at the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels. For numerous identified low energy conformers the final electronic energies were determined at the MP2/6-311++G(2df,2p) level and corrected for thermal effects at B3LYP level. Solvation effects were also considered via the COSMO and C-PCM implicit models. Reasonable agreement was found between bond lengths and angle values in comparison with X-ray crystal structures. Relative equilibrium populations of different conformers were determined from molecular partition functions and the role of electronic, vibrational and rotational degrees of freedom on the stability of conformers were analyzed. For no level of theory is a zwitterionic structure stable in the gas-phase while solvation makes them available depending on the protonation state. Geometrically identified intramolecular hydrogen bonds were analyzed by QTAIM approach. All conformers exhibit strong inter-phosphonate hydrogen bonds and in most of them the alkyl-amine side chain is folded on the P-C-P backbone for further hydrogen bond formation.
Figure
The most stable conformers of pamidronate at different protonation states in gas-phase and solution.  相似文献   

10.
The effect of substitution by the fluorine atom at different positions of D-glucose was investigated by quantum chemical calculation of the low-energy conformers. These were obtained through the Random conformational search method. The geometries of conformers were optimized at the RHF/6-31(d) level, then reoptimization and vibrational analysis were performed at the B3LYP/6-31+G(d) level. Single-point energies were calculated at the B3LYP/6-311++G(2d,2p) level. The free energies of solvation in water were calculated utilizing the AM1-SM5.4 solvation model. For all substitution positions, the ring conformation does not change much, and the pyranoid 4C1 conformers are dominant, while variations in the substitution site result in different effects in the network of hydrogen bonds, anomeric effect, the solvation free energy, and the ratio of alpha- and beta-anomers.  相似文献   

11.
In order to gain deeper insight into structure, charge distribution, and energies of A-T base pairs, we have performed quantum chemical ab initio and density functional calculations at the HF (Hartree-Fock) and B3LYP levels with 3-21G*, 6-31G*, 6-31G**, and 6-31++G** basis sets. The calculated donor-acceptor atom distances in the Watson-Crick A-T base pair are in good agreement with the experimental mean values obtained from an analysis of 21 high resolution DNA structures. In addition, for further correction of interaction energies between adenine and thymine, the basis set superposition error (BSSE) associated with the hydrogen bond energy has been computed via the counterpoise method using the individual bases as fragments. In the Watson-Crick A-T base pair there is a good agreement between theory and experimental results. The distances for (N2...H23-N19), (N8-H13...O24), and (C1...O18) are 2.84, 2.94, and 3.63 A, respectively, at B3LYP/6-31G** level, which is in good agreement with experimental results (2.82, 2.98, and 3.52 A). Interaction energy of the Watson-Crick A-T base pair is -13.90 and -10.24 kcal/mol at B3LYP/6-31G** and HF/6-31G** levels, respectively. The interaction energy of model (9) A-T base pair is larger than others, -18.28 and -17.26 kcal/mol, and for model (2) is the smallest value, -13.53 and -13.03 kcal/mol, at B3LYP/6-31G** and B3LYP/6-31++G** levels, respectively. The computed B3LYP/6-31G** bond enthalpies for Watson-Crick A-T pairs of -14.4 kcal/mol agree well with the experimental results of -12.1 kcal/mol deviating by as little as -2.3 kcal/mol. The BSSE of some cases is large (9.85 kcal/mol) and some is quite small (0.6 kcal/mol).  相似文献   

12.
N-Acetyl-(E)-dehydrophenylalanine N'-methylamide [Ac-(E)-DeltaPhe-NHMe], one of a few representative (E)-alpha,beta-dehydroamino acids, was studied by FTIR in dichloromethane and acetonitrile. To support spectroscopic interpretations and to gain some deeper insight into the Ac-(E)-DeltaPhe-NHMe molecule, the Ramachandran potential energy surface was calculated by the B3LYP/6-31G*//HF/3-21G method and the conformers localized were fully optimized at the B3LYP/6-31 + G** level. The spectra and calculations were compared with those of the related molecules Ac-DeltaAla-NHMe and Ac-(Z)-DeltaPhe-NHMe. The title compound assumes two conformational states in equilibrium in dichloromethane solution with a predominance of the extended conformer E. The Ac-(E)-DeltaPhe-NHMe spectrum is like that of Ac-DeltaAla-NHMe, particularly in the region of bands AI and AII, and unlike that of Ac-(Z)-DeltaPhe-NHMe. The positions of bands AI and II together with the nu(s)(N1--H1) band proves that the conformers E of both DeltaAla and (E)-DeltaPhe compounds are stabilized by the quite strong C5 hydrogen bonds N1--H1...O2. The same conclusion is drawn from the Ramachandran diagrams. The conformers E of both compounds are placed in the global minima and the gaps in energy order between them and the second conformer are large. The conformers E of DeltaAla and (E)-DeltaPhe, apart from the N1--H1...O2 hydrogen bond, show the Cbeta--H...O1 interaction, and Ac-(E)-DeltaPhe-NHMe displays the NH/pi interaction with the N2--H2 projecting in the first carbon atom of the phenyl ring. The C5 hydrogen bond is stronger in (E)-DeltaPhe than that in the DeltaAla compound. This is in agreement with interactions found in the calculated structures and can be explained by the influence of the phenyl ring in position (E). In acetonitrile, the molecule of Ac-(E)-DeltaPhe-NHMe loses its C5 hydrogen bond and becomes unfolded, whereas that of Ac-DeltaAla-NHMe does not vary practically. Adopting conformation E in a non-polar solvent seems to be a general feature of the (E)-DeltaXaa residues.  相似文献   

13.
The energetics of the Menshutkin-like reaction between four mesylate derivatives and ammonia have been computed using B3LYP functional with the 6-31+G** basis set. Additionally, MPW1K/6-31+G** level calculations were carried out to estimate activation barrier heights in the gas phase. Solvent effect corrections were computed using PCM/B3LYP/6-31+G** level. The conversion of the reactant complexes into ion pairs is accompanied by a strong energy decrease in the gas phase and in all solvents. The ion pairs are stabilized with two strong hydrogen bonds in the gas phase. The bifurcation at C2 causes a significant activation barrier increase. Also, bifurcation at C5 leads to noticeable barrier height differentiation. Both B3LYP/6-31+G** and MPW1K/6-31+G** activation barriers suggest the reaction 2 (2a?+?NH3) to be the fastest in the gas phase. The reaction 4 is the slowest one in all environments.
Figure
Ammonium salt formation in a Menshutkin-like reaction between ammonia and (S)-1,4-andydro-2,3-dideoxy-5-O-mesylpentitol (2a)  相似文献   

14.
A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second-order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to detection properties. Full geometry optimisation using the 6-311++G** basis set provided energetic properties, natural charges, frontier orbitals and vibrational modes. Excitation energies were obtained using time-dependent DFT. Hydrogen location and bond order contribute significantly to the electronic properties. The common cyromazine tautomer possesses the lowest energy, highest band gap energy and highest excitation energy. B3LYP/6-31G** dynamics simulations indicate each tautomer possesses a stable structure with limited rotation about the single bonds. Tautomerisation involving intramolecular hydrogen transfer influences the natural charges of neighbouring atoms and the frontier orbital properties. The excitation energies are highly correlated with band gap energies of the frontier orbitals. The calculated infrared and Raman spectra are suitable for vibrational assignments associated with the chemical structure. The tautomeric forms of cyromazine possess similar spatial properties and significant variation in electronic properties.  相似文献   

15.
Exploring non-covalent interactions, such as C-H···π stacking and classical hydrogen bonding (H-bonding), between carbohydrates and carbohydrate-binding modules (CBMs) is an important task in glycobiology. The present study focuses on intermolecular interactions, such as C-H?π (sugar-aromatic stacking) and H-bonds, between methyl β-d-glucopyranoside and l-tyrosine—a proxy model system for a cellulose-CBM complex. This work has made use of various types of quantum mechanics (QM) and molecular mechanics (MM) methods to determine which is the most accurate and computationally efficient. The calculated interaction potential energies ranged between −24 and −38 kJ/mol. The larger interaction energy is due to H-bonding between the phenyl hydroxyl of tyrosine and the O4 of the sugar. Density functional theory (DFT) methods, such as BHandHLYP and B3LYP, exaggerate the H-bond. Although one of the MM methods (viz. MM+) considered in this study does maintain the C-H?π stacking configuration, it underestimates the interaction energy due to the loss of the H-bond. When the O-H bond vector is in the vicinity of O4 (O-H?O4 ≈ 2 Å, e.g., in the case of MP2/6-31G(d)), the torsional energy drops to a minimum. For this configuration, natural bond orbital (NBO) analysis also supports the presence of this H-bond which arises due to orbital interaction between one lone pair of the sugar O4 and the σ∗(O-H) orbital of the phenyl group of tyrosine. The stabilization energy due to orbital delocalization of the H-bonded system is ∼13 kJ/mol. This H-bond interaction plays an important role in controlling the CH/π interaction geometry. Therefore, the C-H?π dispersive interaction is the secondary force, which supports the stabilization of the complex. The meta-hybrid DFT method, M05-2X, with the 6-311++G(d,p) basis set agrees well with the MP2 results and is less computationally expensive. However, the M05-2X method is strongly basis set dependent in describing this CH/π interaction. Computed IR spectra with the MP2/6-31G(d) method show blue shifts for C1-H, C3-H, and C5-H stretching frequencies due to the C-H?π interaction. However, the M05-2X/6-311++G(d,p) method shows a small red shift for the C1-H stretching region and blue shifts for the C2-H and C3-H stretches. For the aromatic tyrosine Cδ1-Cε1 and Cδ2-Cε2 bonds in the complex, the calculated IR spectra show red shifts of 12 cm−1 (MP2/6-31G(d)) and 5 cm−1 (M05-2X/6-311++G(d,p)). This study also reports the upfield shifts of computed 1H NMR chemical shifts due to the C-H?π interaction.  相似文献   

16.
The structural stability and internal rotation in 3-cyclopropenecarboxaldehyde and 3-cyclo-propenecarboxylic acid fluoride were investigated by ab initio calculations with a 6-31G* atomic basis in the latter and a 6-311G* atomic basis set in the former case. For the sake of comparison also results obtained with a 3-21G basis are given in the paper. As expected, it turned out that this basis set is not large enough for three-membered rings. The calculations were carried out both at the Restricted Hartree-Fock (HF) and the second order Moller-Plesset (MP2) levels. The trans-form is predicted to be the lower energy conformer for both molecules. However, in case of the fluoride the two conformers have nearly the same energy. Full optimization was performed at the transition states and the asymmetric potential function for the CXO internal rotations was predicted for both molecules.  相似文献   

17.
Abstract

The structure of the nonclassical πκ base pair (7–methyl-oxoformycin … 2,4-diaminopyrimidine) was studied at the ab initio Hartree-Fock (HF) and MP2 levels using the 6–31G* and 6–31G** basis sets. The πκ base pair is bound by three parallel hydrogen bonds with the donor-acceptor-donor recognition pattern. Recently, these bases were proposed as an extension of the genetic alphabet from four to six letters (Piccirilli et al. Nature 343, 33(1990)). By the HF/6- 31G* method with full geometry optimization we calculated the 12 degree propeller twist for the minimum energy structure of this complex. The linearity of hydrogen bonds is preserved in the twisted structure by virtue of the pyramidal arrangement of the κ-base amino groups. The rings of both the π and κ molecules remain nearly planar. This nonplanar structure of the πκ base pair is only 0.1 kcal/mol more stable than the planar (Cs) conformation. The HF/6- 31G* level gas-phase interaction energy of πκ (—13.5 kcal/mol) calculated by us turned out to be nearly the same as the interaction energy obtained previously for the adenine-thymine base pair (—13.4 kcal/mol) at the same computational level. The inclusion of p-polarization functions on hydrogens, electron correlation effects (MP2/6–31G** level), and the correction for the basis set superposition error (BSSE) increase this energy to -14.0 kcal/mol.  相似文献   

18.
The structure of a previously calculated transition state (TS) was used to design the [tetrahydro-2-(methylthio)furan-2-yl]methyl phosphate dianion (1) as a new scaffold for transition-state analogs of reactions catalyzed by the inverting glycosyltransferases. This scaffold contains relevant features of the donor and acceptor and represents a new type of potential inhibitors for these enzymes. Available conformational space of 1 was explored using DFT quantum chemical methods by means of two-dimensional potential-energy maps calculated as a function of Phi, Psi, and omega dihedral angles at the B3LYP/6-31+G* level. The calculated potential energy surfaces revealed the existence of several low-energy domains. Structures from these regions were refined at the 6-311++G** level and led to 14 conformers. The stability of conformers is influenced by their environment, and in aqueous solution two conformers dominate the equilibrium. A superposition of calculated conformers with the predicted TS structure revealed that the preferred conformers in solution nicely mimic structural features of the TS. These results imply that 1 has structural properties required to mimic the TS and therefore can be used as a scaffold for further development of TS-analog inhibitors for retaining glycosyltransferases.  相似文献   

19.
The structure and conformational stability of vinyl selenonyl fluoride, chloride and bromide CH2=CH–SeO2X (X is F, Cl and Br) were investigated using density functional B3LYP/6-311+G** and ab initio MP2/6-311+G** calculations. From the calculations the molecules were predicted to exist only in the non-planar gauche conformation with the vinyl C=C group almost eclipsing one of the selenonyl Se=O bonds as a result of conjugation between the two moieties. Single-minimum potential scans were calculated at the DFT level for the molecules. The vibrational frequencies were computed using B3LYP/6-311+G**. Normal coordinate calculations were then carried out and potential energy distributions were calculated for the three molecules in the gauche conformation.Figure Potential function for the asymmetric torsion in vinyl selenonyl fluoride (dotted line), chloride (dashed line) and bromide (solid line) as determined at the DFT-B3LYP/6-311+G** level  相似文献   

20.
Lu X  Shi L  Ji H 《Journal of molecular modeling》2012,18(11):4787-4795
The mechanism of the cycloaddition reaction between singlet silylene silylene (H(2)Si=Si:) and acetaldehyde has been investigated with CCSD(T)//MP2/6-31G* and CCSD(T)//MP2/6-31G** method, from the potential energy profile, we could predict that the reaction has three competitive dominant reaction pathways. The present rule of this reaction is that the 3p unoccupied orbital of the Si: atom in silylene silylene (H(2)Si=Si:) inserts on the π orbital of acetaldehyde from oxygen side, resulting in the formation of an intermediate. Isomerization of the intermediate further leads to the generation of a four-membered ring silylene (the H(2)Si-O in the opposite position). In addition, the [2?+?2] cycloaddition reaction of the two π-bonds in silylene silylene and acetaldehyde generates another four-membered ring silylene (the H(2)Si-O in the syn-position). Because of the unsaturated property of Si: atom in the two four-membered ring silylenes, they could further react with acetaldehyde, resulting in the generation of two spiro-heterocyclic ring compounds with Si. Simultaneously, the ring strain of the four-membered ring silylene (the H(2)Si-O in the syn-position) makes it isomerize to a twisted four-membered ring product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号