首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the spinnable regenerated silk fibroin aqueous solution with high concentration was prepared and the regenerated silk fibers were obtained from the aqueous solution by two different spinning processes at ambient temperature. The orientation of these fibers was characterized by polarizing microscope. Their secondary structure was investigated by Raman spectroscopy and related mechanical properties were also measured. These data showed that shearing is an important step for increasing orientation and silk II (β-sheet) structure, and the mechanical properties of the regenerated silk fibers can also be improved by shearing.  相似文献   

2.
X-ray diffraction measurements of regenerated Bombyx mori silk fibroin were carried out to determine its structural characteristic from an analysis of differential radial distribution functions (DRDFs). The temperature dependence of X-ray diffraction patterns from noncrystalline and crystal structures of regenerated silk fibroin was investigated using a high temperature furnace. Time resolved X-ray diffraction profiles were also obtained to construct kinematical models of structural changes caused by the addition of water. DRDFs, calculated from the experimental data, were compared with the DRDFs simulated on the basis of the Monte Carlo method. In order to model the noncrystalline structures, structural units were assumed to be parts of the crystalline structure of silk and those with appropriate structural defects reported previously. From the comparison of experimental and simulated DRDFs, it was determined that noncrystalline regenerated silk consisted of locally ordered atomic sheets similar to the atomic arrangement in the silk I crystal (Type-I sheets), and the final state of the structural change was noncrystalline, consisting of small crystallites, the structure of which is similar to that of silk II (Type-II crystallites). Time resolved DRDFs were also qualitatively interpreted by both the ordering of Type-I sheets and structural changes from Type-I to Type-II. The formation of the small Type-II crystallites obtained in this study was consistent with the nucleation of silk II by birefringence measurements of silk glands and the spinneret of Bombyx mori silkworm reported previously. X-ray diffraction should be a useful technique to understand the structural characteristics of noncrystalline organic materials.  相似文献   

3.
The ethanol-induced conformation transition of regenerated Bombyx mori silk fibroin membrane from a poorly defined to the well ordered state was monitored by time-resolved Fourier transform infrared spectroscopy (FTIR) for the first time. From the analysis of FTIR difference spectra, taken on time scales as short as 6 s and up to 1 h after addition of ethanol, intensity vs. time plots of an increasing band at 1618 cm(-1) were observed indicating formation of a beta-sheet coincident with the loss of intensity of a band at 1668 cm(-1) indicating decreases of random coil and/or silk I structure. Both infrared markers were fitted with identical biphasic exponential decay functions, however, there was a clear burst phase occurring prior to the onset of the observed transitions. The conformation transition process is indicated to either proceed sequentially through (at least) two intermediate states that contain different levels of beta-sheet structure or to have parallel pathways of initial beta-sheet formation followed by a slower 'perfection' phase. The first observed process forms in a burst phase a few seconds after mixing (or even faster), prior to the collection of the first spectrum at 6 s. The second observed process occurs with a time constant of approximately 0.5 min, the intermediate present at this stage then continues with a time constant of 5.5 min completing the observed formation of the beta-sheet. The conformation transition of this slower intermediate is not only indicated by an analysis of the kinetics of the random coil and beta-sheet-specific bands discussed above, it roughly coincides with the appearance of an additional infrared marker at 1695 cm(-1), which may be a marker for beta-sheet structure specific to the formation of the perfected structure. The conformation transition of this protein analyzed by infrared spectroscopy provides insight into a part of the fascinating process of cocoon formation in B. mori.  相似文献   

4.
5.
Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years and can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent-processing methods can be used to generate silk biomaterials for a range of applications. In this protocol, we include methods to extract silk from B. mori cocoons to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, as well as for drug delivery.  相似文献   

6.
The genes for silk fibroin in Bombyx mori   总被引:29,自引:0,他引:29  
The genes for the protein silk fibroin were quantitated by hybridizaton of purified fibroin messenger RNA with the DNA from several tissues of the silk-worm Bombyx mori.  相似文献   

7.
A procedure has been developed to obtain native fibroin in a pure state from the reservoir part of the silk gland. The purified protein has a sedimentation coefficient of 10 S as determined on sucrose density gradients and the amino acid composition is similar to that reported for fibroin from the cocoons. The effects of various solvents has been studied; lithium thiocyanate was found to be the solvent of choice. By in vivo labeling of fibroin with [3H]glycine and [14C]alanine it was demonstrated that fibroin synthesized in the posterior part of the gland and that stored in the reservoir part are identical.  相似文献   

8.
B Lotz  F Colonna Cesari 《Biochimie》1979,61(2):205-214
Some recent data (i.e. published in the last ten years) on the chemical and crystalline structures of B. mori silk are reviewed. The main emphasis is put on the crystallizable portion of silk fibroin, including its chemical constitution and its molecular conformation (at the crystallographic unit-cell level) in the two crystalline modifications : the beta pleated sheet and the silk I structures. The structural aspects are based on a discussion of X-ray and electron diffraction data, and on conformational energy analyses of a model (Ala-Gly)n polypeptide of silk fibroin.  相似文献   

9.
1. A solution of Bombyx mori silk fibroin was digested with chymotrypsin. Amino acid analyses of the chymotryptic precipitate showed in addition to the main constituents Gly, Ala, Ser and Tyr, very small amounts of Lys, His, Arg, Asp, Thr, Glu, Pro, Cys, Val, Met, Ile, Leu, Phe and Trp. 2. A stable solution of the chymotryptic precipitate in 6m-urea was obtained by dialysing a solution in 50% (w/v) lithium thiocyanate against 6m-urea. 3. The dinitrophenylated chymotryptic precipitate in 6m-urea was fractionated by gel filtration and by ion-exchange chromatography. On Dowex 1 (X2), a main fraction Id and three further fractions with different amino acid compositions and molecular weights were obtained. 4. Specific rearrangement and fission of the bonds involving the serine nitrogen atoms of fraction Id and fractionation of the resulting mixture by gel filtration yielded five fractions. Two of these fractions had the compositions DNP-Ser-(Gly6,Ala4,Ser) and DNP-Ser-(Gly4,Ala2 or Ala3,Ser) and are presumably double repeating units according to the proposed formula of Lucas, Shaw & Smith (1957), namely [Ser-Gly-(Ala-Gly)n]2, for n values of 2 and 1 respectively.  相似文献   

10.
Silk fibroin (SF) was dissolved in N-methyl morpholine N-oxide (NMMO) at a polymer concentration of 13% (w/w); thermal and rheological solution properties were characterized. The melting/crystallization behaviour of NMMO was influenced by SF presence. Melting of NMMO hydrate decreased to 71 degrees C and a cold crystallization peak appeared at 35 degrees C on heating. None crystallization occurred on cooling. Quenching at a temperature of 50 degrees C or higher did not induce any crystallization on heating. Viscosity of SF-NMMO solutions decreased as a function of temperature. At 75 degrees C, viscosity remained constant for 360 min. SF-NMMO dope was spun by using a lab-scale wet spinning line. The extruded filament was coagulated in an ethanol bath. Regenerated SF fibres were collected at different draw ratios and their morphological, physical, and mechanical properties were characterized. Fibre diameters ranged from 133 to 19mum, cross-section was regularly circular, and surface was generally smooth, with a very fine granular aspect. Birefringence increased with increasing the draw ratio, especially when take up and post-spinning draw were coupled. FT-IR spectra and DSC thermograms confirmed that SF fibres crystallized into Silk II structure. The IR crystallinity index did not change as a function of drawing. Regenerated SF fibres undrawn or drawn only during the coagulation step showed the mechanical behaviour typical of a brittle material. However, when both take up and post-spinning draw were applied, fibres displayed a ductile-stable behaviour. Typical values of the mechanical parameters of regenerated SF fibres were: E=8.7 GPa, sigma(b)=120 MPa and epsilon(b)=35%.  相似文献   

11.
Ultrastructure of fibroin in the silk gland of larval Bombyx mori   总被引:1,自引:0,他引:1  
The fibroin molecules stored in Golgi vacuoles in the posterior silk gland cells of 72-h-old, fifth instar larvae of Bombyx mori L. were observed electron-microscopically. The fibers which float in the Golgi vacuoles often have their ends attached to the limiting membrane. The fibers are helical bundles about 130 Å in diameter composed of 5–7 threads, each 20–30 Å thick.  相似文献   

12.
13.
There are still several problems associated with the spinning of dialyzed silk fibroin solutions. In this work some of these problems have been examined. The calcium nitrate tetrahydrate-methanol system was used to dissolve the silk fibroin. A compositional phase diagram was constructed at various concentrations of the solvent system. Regenerated fibroin powders from undialyzed fibroin solution in several coagulants showed different conformations. Regenerated powders from several coagulants except methanol and ethanol were resoluble in water. Atomic absorption analysis revealed that the calcium cations strongly interact with fibroin molecules in dialyzed fibroin solution, which may interfere with the regeneration of a strong fiber. Kinetic studies to determine the diffusion coefficient of methanol into dialyzed and concentrated fibroin solution were reported. The properties of both original and regenerated fibroin such as solubility in water and thermal behaviors using DSC were compared. Regenerated fibroin fiber was spun by the wet spinning method. An X-ray diffractogram showed that the regeneration process decreased the crystallinity of regenerated fibroin fiber. SEM images of the surface and cross section of the regenerated fibroin fibers were discussed.  相似文献   

14.
A new crystalline polymorph of Bombyx mori silk, which forms at the air–water interface, has been characterized. A previous study found this structure to be trigonal, and to be distinctly different than the two previously observed silk crystal structures, silk I and silk II. This new structure was named silk III. Identification of this new silk polymorph was based on evidence from transmission electron microscopy and electron diffraction, coupled with molecular modeling. In the current paper, additional data enables us to refine our model of the silk III structure. Some single crystal electron diffraction patterns indicate a deviation in symmetry away from a perfect trigonal unit cell to monoclinic unit cell. The detailed shape of the powder diffraction peaks also supports a monoclinic cell. The monoclinic crystal structure has an nonprimitive unit cell incorporating a slightly distorted hexagonal packing of silk molecular helices. The chains each assume a threefold helical conformation, resulting in a crystal structure similar to that observed for polyglycine II, but with some additional sheet-like packing features common to the threefold helical crystalline forms of many glycine-rich polypeptides. © 1997 John Wiley & Sons, Inc. Biopoly 42: 705–717, 1997  相似文献   

15.
Radioactive iodinated silk fibroin messenger RNA and ribosomal RNA have been used as probes to localize their genes in tissue sections of Bombyx mori by in situ hybridization. From filter hybridization experiments it is inferred that the majority of the grains produced by in situ hybridization with fibroin mRNA represents specific hybridization to fibroin genes. Sections of the posterior silk gland where silk is synthesized have been compared with those of the middle gland which does not synthesize fibroin. Glands have been analyzed from the second through the fifth (last) larval instar during feeding and moulting periods. During later stages when the gland cells increase their DNA content by polyploidization, serial sections were required to follow the distribution of grains through entire nuclei. At all stages, both ribosomal DNA and fibroin genes are distributed randomly throughout the nuclei without a preferred relationship to any nuclear structure.  相似文献   

16.
The rheological properties of fibroin silk solutions extracted from the middle division of Bombyx mori silkworms were examined. Acidification of the solutions with acetic acid vapor gelled the material, a process which at short time scales could be reversed by exposure to ammonia vapor. The solution could also be converted to sol from the gel state by the addition of EDTA. The possible mechanisms for gel formation in fibroin solutions is discussed as are the implications for the process of spinning silk fibers.  相似文献   

17.
Bombyx mori silk fibroin from the silkworm was found to be soluble in a calcium nitrate-methanol system. Fibroin dissolves in 75% w/v Ca(NO3)2/MeOH solution at a temperature of 67°C. The viscometric behavior of the fibroin-salt solution was analyzed and the fibroin's secondary structures were determined via 13C solution nmr. Fourier transform ir, solid state 13C-nmr, x-ray diffraction, differential scanning calorimetry, scanning electron microscopy (SEM), and polarizing microscopy were used to characterize regenerated films and fibers. A compositional phase diagram of fibroin in the salt solution was constructed. Viscosity data indicate that there is aggregation of fibroin chains within the salt solution. The extremely high value of intrinsic viscosity of 8.7 dL/g at 298 K may be due to aggregation. Aggregation may be caused by the complexing of calcium ions with the fibroin chains at their amide linkages. The energy required for viscous flow for the fibroin solution (ΔHvis = 9.03 kcal/mol) is greater than that of the solvent (ΔHvis = 7.01 kcal/mol). Chain entanglements may be hindering the free motion of chains thus increasing the energy required for the viscous flow. 13C-nmr shows that fibroin chains exist in two independent conformational environments. While most of the molecule is in a random coil conformation, there is evidence of some order within the chains of fibroin. In as-cast regenerated films, the fibroin chains are in a random coil/α-helix conformation with some β-sheet content. Crystallinity induced by immersion of thin films in methanol is evidenced via x-ray diffraction, which shows lattice spacings at 4.042 Å. Thin films have a fibrillar morphology that is clearly shown under the SEM and the polarizing microscope. Fibers were hand pulled from the concentrated fibroin-salt solutions and coagulated with acetone and methanol. A microscopic analysis was done using the polarizer. © 1997 John Wiley & Sons, Inc. Biopoly 42: 61–74, 1997  相似文献   

18.
Fibroins serve as the major building blocks of silk fiber. As the major component of fibroin, the fibroin heavy chain is a considerably large protein comprising N-terminal and C-terminal hydrophilic domains and 12 highly repetitive Gly-Ala-rich regions flanked by internal hydrophilic blocks. Here, we show the crystal structure of the fibroin N-terminal domain (FibNT) at pH?4.7, revealing a remarkable double-layered anti-parallel β-sheet with each layer comprising two FibNT molecules entangled together. We also show that FibNT undergoes a pH-responsive conformational transition from random coil to β-sheets at around pH?6.0. Dynamic light scattering demonstrates that FibNT tends to oligomerize as pH decreases to 6.0, and electron microscopy reveals micelle-like oligomers. Our results are consistent with the micelle assembly model of silk fibroin and, more importantly, show that the N-terminal domain in itself has the capacity to form micelle-like structures in response to pH decrease. Structural and mutagenesis analyses further reveal the important role of conserved acidic residues clustered in FibNT, such as Glu56 and Asp100, in preventing premature β-sheet formation at neutral pH. Collectively, we suggest that FibNT functions as a pH-responsive self-assembly module that could prevent premature β-sheet formation at neutral pH yet could initiate fibroin assembly as pH decreases along the lumen of the posterior silk gland to the anterior silk gland.  相似文献   

19.
The messenger RNA for the protein silk fibroin has been isolated from the posterior silk gland of Bombyx mori and identified by partial sequence analysis. The sequence of mRNA could be predicted because the protein has a simple repetitious primary structure in which glycine residues comprise 45% of all residues and alternate predominantly with alanine and serine.  相似文献   

20.
Dynamic light scattering (DLS) and rheological measurements were performed on aqueous silk fibroin solutions extracted from the middle division of Bombyx mori silkworm over a wide range of polymer concentration C from 0.08 to 27.5 wt %. DLS results obtained in the dilute region of C less than 1 wt % are consistent with a model that an elementary unit is a large protein complex consisting of silk fibroin and P25 with a 6:1 molar ratio. Rheological measurements in the dilute C region reveal that those units (or clusters) with the hydrodynamic radius of about 100 nm form a network extending over the whole sample volume with small pseudoplateau modulus mainly by ionic bonding between COO(-) ions of the fibroin molecules and divalent metallic ions such as Ca(2+) or Mg(2+) ions present in the sample and also that, after a yield stress is reached, steady plastic flow is induced with viscosity much lower than the zero-shear viscosity estimated from creep and creep recovery measurements by 4-6 orders of magnitude. Angular frequency omega dependencies of the storage and the loss shear moduli, G'(omega) and G' '(omega), measured in the linear viscoelastic region, indicate that all solutions possess the pseudoplateau modulus in the low omega region and samples become highly viscoleastic for C greater, similar 4.2 wt %. Above C = 11.2 wt % another plateau appears at the high omega end accompanied by a distinct maximum of G' ' in the intermediate omega region. The relaxation motion with tau = 0.5 s corresponding to the maximum of G' ' is one of characteristic properties of the fibroin solutions in the high C region. Thermorheological behaviors of the solution with C = 27.5 wt % show that the network structure formed in the MM part of the silk gland is susceptible to temperature and a more stable homogeneous network is realized by raising the temperature up to T = 65 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号