首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of glucagon on the rate of muscle protein synthesis was examined in vivo and in the isolated perfused rat hemicorpus. An inhibition of protein synthesis in skeletal muscles from overnight-fasted rats at various plasma concentrations of glucagon was demonstrated in vivo. The plantaris muscle (Type II, fibre-rich) was more sensitive than the soleus (Type I, fibre-rich). Myofibrillar and sarcoplasmic proteins were equally sensitive in vivo. However, protein synthesis in mixed protein and in sarcoplasmic and myofibrillar fractions of the heart was unresponsive to glucagon in vivo. In isolated perfused muscle preparations from fed animals, the addition of glucagon also decreased the synthesis of mixed muscle proteins in gastrocnemius (Type I and II fibres) and plantaris, but not in the soleus. The sarcoplasmic and myofibrillar fractions of the plantaris were also equally affected in vitro. Similar results were observed in vitro with 1-day-starved rats, but the changes were less marked.  相似文献   

2.
The rate of protein synthesis was measured in muscles of the perfused rat hemicorpus, and values were compared with rates obtained in whole animals. In gastrocnemius muscle of fed rats the rate of synthesis measured in the hemicorpus was the same as that in the whole animal. However, in plantaris, quadriceps and soleus muscles rates were higher in the hemicorpus than those in vivo. In the hemicorpus, starvation for 1 day decreased the rate of protein synthesis in gastrocnemius and plantaris muscles, in parallel with decreases in the RNA content, but the soleus remained unaffected. Similar effects of starvation were observed in vivo, so that the relationships between rates in vivo and in the hemicorpus were the same as those in fed rats. Proteins of quadriceps and plantaris muscles were separated into sarcoplasmic and myofibrillar fractions. The rate of synthesis in the sarcoplasmic fraction of the hemicorpus from fed rats was similar to that in vivo, but synthesis in the myofibrillar fraction was greater. In the plantaris of starved rats the rates of synthesis in both fractions were lower, but the relationships between rates measured in vivo and in the perfused hemicorpus were similar to those seen in fed rats. The addition of insulin to the perfusate of the hemicorpus prepared from 1-day-starved animals increased the rates of protein synthesis per unit of RNA in gastrocnemius and plantaris muscles to values above those seen in fed animals when measured in vivo or in the hemicorpus. Insulin had no effect on the soleus. Overall, the rates of protein synthesis in the hemicorpus differed from those in vivo. However, the effect of starvation when measured in the whole animal was very similar to that measured in the isolated rat hemicorpus when insulin was omitted from the perfusate.  相似文献   

3.
The study tested the hypothesis that a higher rate of myofibrillar than sarcoplasmic protein synthesis is responsible for the rapid postdifferentiation accumulation of myofibrils and that an inadequate nutrient intake will compromise primarily myofibrillar protein synthesis. Myofibrillar (total and individual) and sarcoplasmic protein synthesis, accretion, and degradation rates were measured in vivo in well-nourished (C) rat pups at 6, 15, and 28 days of age and compared at 6 and 15 days of age with pups undernourished (UN) from birth. In 6-day-old C pups, a higher myofibrillar than sarcoplasmic protein synthesis rate accounted for the greater deposition of myofibrillar than sarcoplasmic proteins. The fractional synthesis rates of both protein compartments decreased with age, but to a greater degree for myofibrillar proteins (-54 vs. -42%). These decreases in synthesis rates were partially offset by reductions in degradation rates, and from 15 days, myofibrillar and sarcoplasmic proteins were deposited in constant proportion to one another. Undernutrition reduced both myofibrillar and sarcoplasmic protein synthesis rates, and the effect was greater at 6 (-25%) than 15 days (-15%). Decreases in their respective degradation rates minimized the effect of undernutrition on sarcoplasmic protein accretion from 4 to 8 days and on myofibrillar proteins from 13 to 17 days. Although these adaptations in protein turnover reduced overall growth of muscle mass, they mitigated the effects of undernutrition on the normal maturational changes in myofibrillar protein concentration.  相似文献   

4.
Studies on the incorporation of DL-[1- 14-C] leucine into myosin, total myofibrillar protein and total sarcoplasmic protein have shown age-dependent alterations in the rate of synthesis of these protiens in red and white skeletal muscles of chicks. During the early phase of ex ovo development white muscle synthesizes significantly higher amounts of myofibrillar proteins, especially myosin, in comparison with red muscle. The rate of sarcoplasmic protein synthesis in red and white muscles one day after hatching is almost identical. The red muscle shows a markedly higher rate of sarcoplasmic protein synthesis from 10 days after hatching. The incorporation of amino acid into various protein fractions of both the muscle types decreases with advancing age. In adult chicks red muscle displays a higher ability to synthesize sarcoplasmic and myofibrillar proteins.  相似文献   

5.
Rates of protein synthesis in skeletal, cardiac and smooth muscle of fully grown fowl (Gallus domesticus) were determined in vivo by means of the constant infusion method using [14C]proline. In the anterior latissimus dorsi muscle, containing predominantly slow fibres, the average synthesis rate of non-collagen muscle proteins was 17.0 +/- 3.1% per day, a value higher than that obtained for cardiac muscle (13.8 +/- 1.3% per day) and for smooth muscle of the gizzard (12.0 +/- 1.9% per day). In the posterior latissimus dorsi muscle, containing predominantly fast fibres, synthesis rates were much lower (6.9 +/- 1.8% per day). In each case these average rates for the non-collagen protein were similar to the average rate for the sarcoplasmic and myofibrillar protein fractions. The RNA concentration of these four muscles showed that relative rates of protein synthesis were determined mainly by the relative RNA concentrations. The rate of protein synthesis per unit of DNA (the DNA activity) was similar in the two skeletal muscles, but somewhat lower in cardiac muscle and gizzard, possibly reflecting the larger proportion of less active cell types in these two muscles. These quantitative aspects of protein turnover in the two skeletal muscles are discussed in terms of the determination of ultimate size of the DNA unit, and in relation to muscle ultrastructure.  相似文献   

6.
The turnover of 3-methylhistidine (N tau-methylhistidine) and in some cases actin, myosin heavy chain and aldolase in skeletal muscle was measured in a number of experiments in growing and adult rats in the fed and overnight-starved states. In growing fed rats in three separate experiments, measurements of the methylation rate of protein-bound 3-methylhistidine by either [14C]- or [3H]-methyl-labelled S-adenosylmethionine show that 3-methylhistidine synthesis is slower than the overall rate of protein synthesis indicated by [14C]tyrosine incorporation. Values ranged from 36 to 51%. However, in one experiment with rapidly growing young fed rats, acute measurements over 1 h showed that 3-methylhistidine synthesis could be increased to the same rate as the overall rate. After overnight starvation in these rats, the steady-state synthesis rate of 3-methylhistidine was 38.8% of the overall rate. This was a similar value to that in adult non-growing rats, in which measurements of the relative labelling of 3-methylhistidine and histidine after a single injection of [14C]histidine indicated that 3-methylhistidine synthesis was 37% of the overall rate in the fed or overnight-starved state. According to measurements of actin, myosin heavy-chain and aldolase synthesis in the over-night-starved state with young rats, with a variety of precursors, slow turnover of 3-methylhistidine results from the specific slow turnover of actin, since turnover rates of myosin heavy chain, mixed protein and aldolase were 2.5, 3 and 3.4 times faster respectively. However, in the fed state synthesis rates of actin were increased disproportionately to give similar rates for all proteins. These results show that (a) 3-methylhistidine turnover in muscle is less than half the overall rate in both young and adult rats, (b) slow 3-methylhistidine turnover reflects the specifically slow turnover of actin compared with myosin heavy chain and other muscle proteins, and (c) during growth the synthesis rate of actin is particularly sensitive to the nutritional state and can be increased to a similar rate to that of other proteins.  相似文献   

7.
Levels of various protein fractions, (sarcoplasmic, myosin, actin, non-collagen and collagen) and the rate of their degradation by proteases were studied in phasic and tonic muscles of marine prawn, Penaeus indicus following acute (2 d) and chronic (15 d) exposure to sublethal concentration of phosphamidon. During exposure, greater decrease in sarcoplasmic protein fraction was observed in phasic muscle as compared to other myofibrillar proteins. But the sarcoplasmic protein content showed an elevation in tonic muscle. The changes in protein fractions were more pronounced during acute exposure than chronic exposure both in phasic and tonic muscles. These changes were correlated with the elevation of the acidic, neutral and basic protease activities during acute and chronic exposure. Free amino acids were increased during acute exposure, while they showed a significant decrease during chronic exposure in both the muscles. These results indicate that protein metabolism in both phasic and tonic muscles was significantly altered following phosphamidon exposure. These differential responses observed at acute and chronic exposure indicate the operation of compensatory mechanisms to mitigate the phosphamidon toxic stress.  相似文献   

8.
MARILYN M. JONES 《Ibis》1991,133(2):193-198
In a study of female House Sparrows Passer domesticus , it was established that almost all of the lean dry material lost from the flight muscles during the period of egg formation and laying was protein. The two large fractions of muscle protein, the sarcoplasmic and myofibrillar fractions, were measured biochemically. Protein in the myofibrillar fraction, which formed the greater part of the total protein, decreased during the study period. There was no evidence to support the proposal that sarcoplasm in muscle acts as the main reserve of proteins.  相似文献   

9.
The synthesis rates of total heart protein and of sarcoplasmic and myofibrillar protein fractions have been determined by perfusion of isolated rat hearts with [14C]tyrosine at constant specific radioactivity. In hearts perfused without insulin, both myofibrillar and sarcoplasmic proteins were synthesized at a fractional rate of 10–11% per day. This corresponds to a half-life for synthesis of about 7 days. The effect of added insulin was to increase the rate of heart-protein synthesis to a half-life of 3–4 days. With hearts perfused via the left atrium and performing external work, there was a rise in the specific radioactivity of intracellular free tyrosine, and the half-life for synthesis of proteins was 3–4 days. The extent of labelling of individual myofibrillar proteins was estimated after polyacrylamide-gel electrophoresis of solubilized myofibrils in the presence of sodium dodecyl sulphate. No particular protein showed an unusually high or low specific radioactivity after labelling in perfusion. Insulin caused a general increase in labelling of all the proteins analysed.  相似文献   

10.
Role of the calpain system in muscle growth.   总被引:8,自引:0,他引:8  
Muscle protein degradation has an important role in rate of muscle growth. It has been difficult to develop procedures for measuring rate of muscle protein degradation in living animals, and most studies have used in vitro systems and muscle strips to determine rate of protein degradation. The relationship between results obtained by using muscle strips and rate of muscle protein turnover in living animals is unclear because these strips are in negative nitrogen balance and often develop hypoxic cores. Also, rate of protein degradation is usually estimated by release of labeled amino acids, which reflects an average rate of degradation of all cellular proteins and does not distinguish between rates of degradation of different groups of proteins such as the sarcoplasmic and the myofibrillar proteins in muscle. A number of studies have suggested that the calpain system initiates turnover of myofibrillar proteins, which are the major group of proteins in striated muscle, by making specific cleavages that release thick and thin filaments from the surface of the myofibril and large polypeptide fragments from some of the other myofibrillar proteins. The calpains do not degrade myofibrillar proteins to small peptides or to amino acids, and they cause no bulk degradation of sarcoplasmic proteins. Hence, the calpains are not directly responsible for release of amino acids during muscle protein turnover. Activity of the calpains in living cells is regulated by calpastatin and Ca2+, but the nature of this regulation is still unclear.  相似文献   

11.
Cheema IR  Hermann C  Postell S  Holifield B 《Cytobios》1999,97(386):133-139
The total sarcoplasmic and myofibrillar protein synthesis was reduced in incubated fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus of rat after in vivo tumour necrosis factor-alpha treatment at 50 micrograms/kg/day for 5 days. The rate of protein synthesis in the myofibrillar fraction was inhibited more severely (41% in EDL and 34% in soleus) than that in the sarcoplasmic fraction (23% in EDL and 14% in soleus). Sucrose density gradient centrifugation analysis indicated that TNF-alpha treatment impaired polysomal aggregation in rat diaphragm muscle. Compared with the control muscles, the ratio of 40S and 60S subunits to polysomes was higher in TNF-alpha treated muscles. These findings suggest a role for TNF-alpha in the translational regulation of protein synthesis in rat skeletal muscle.  相似文献   

12.
Treatment of isolated myofibrils with an ATP-containing relaxing solution results in the dissociation of a preformed quantity of myofilaments called 'easily releasable myofilaments'. Van der Westhuyzen, Matsumoto & Etlinger [(1981) J. Biol. Chem. 256, 11791-11797] presented experimental evidence that these myofilaments represent intermediate products in the turnover of myofibrillar proteins. To investigate further this question, we measured the size of the fraction of easily releasable myofilaments in three different species of skeletal muscles from rats subjected to well-defined catabolic conditions, namely starvation or chronic glucocorticoid administration. The results were as follows: (1) The amount of easily releasable myofilaments was transiently increased about 2-3-fold during both experiments, and thus paralleled the known alterations in the rate of overall muscle protein breakdown rather than in those of synthesis. (2) These changes were observed in muscles containing predominantly fast-twitch fibres, but not in slow-twitch soleus muscle, a muscle that is known to be more resistant to catabolic conditions. (3) The starvation-induced increase of the size of the fraction of easily releasable myofilaments could be significantly reduced by treatment of the starving animals with the proteinase inhibitor E-64. These results are compatible with the idea that easily releasable myofilaments are intermediates in the degradative pathway of myofibrillar proteins and that a proteolytic step may be involved in the conversion of myofilaments into easily releasable myofilaments.  相似文献   

13.
We recently demonstrated in neonatal pigs that, with amino acids and glucose maintained at fasting levels, the stimulation of protein synthesis in longissimus dorsi muscle with feeding can be reproduced by a physiological rise in insulin alone. In the current report, we determine whether the response of protein synthesis to insulin in the neonatal pig is 1) present in muscles of different fiber types, 2) proportional in myofibrillar and sarcoplasmic proteins, 3) associated with increased translational efficiency and ribosome number, and 4) present in other peripheral tissues and in viscera. Hyperinsulinemic-euglycemic-amino acid clamps were performed in 7- and 26-day-old pigs infused with 0, 30, 100, or 1,000 ng. kg(-0.66). min(-1) of insulin to reproduce insulin levels present in fasted, fed, refed, and supraphysiological conditions, respectively. Tissue protein synthesis was measured using a flooding dose of L-[4-(3)H]phenylalanine. Insulin increased protein synthesis in gastrocnemius muscle and, to a lesser degree, masseter muscle. The degree of stimulation of protein synthesis by insulin was similar in myofibrillar and sarcoplasmic proteins. Insulin increased translational efficiency but had no effect on ribosome number in muscle. All of these insulin-induced changes in muscle protein synthesis decreased with age. Insulin also stimulated protein synthesis in cardiac muscle and skin but not in liver, intestine, spleen, pancreas, or kidney. The results support the hypothesis that insulin mediates the feeding-induced stimulation of myofibrillar and sarcoplasmic protein synthesis in muscles of different fiber types in the neonate by increasing the efficiency of translation. However, insulin does not appear to be involved in the feeding-induced stimulation of protein synthesis in visceral tissues. Thus different mechanisms regulate the growth of peripheral and visceral tissues in the neonate.  相似文献   

14.
Experiments were conducted to investigate the influence of endurance exercise training on protein synthesis in skeletal muscle, heart, and liver. Training decreased incorporation of [14C]-leucine into proteins of the stromal fraction of muscle but there was no change in amino acid incorporation into proteins of the sarcoplasmic and myofibrillar fractions. Incorporation of [14C]-leucine into the protein of heart, liver, and plasma was depressed in trained rats compared to untrained rats. The specific radioactivity of [14C]-leucine was similar in tissues of trained and untrained rats and thus the depressed amino acid incorporation represents a decrease in the rate of protein synthesis. These observations demonstrate that the adaptation of muscle protein metabolism to endurance training is quite different than the alterations during work-induced hypertrophy of muscle. The difference in adaptation probably relates to the functional differences between the types of exercise. However depression of protein synthesis in trained rats is a general effect in several tissues and not an effect localized in muscle tissue.  相似文献   

15.
Summary The synthesis of protein and nucleic acids was studied by isotope incorporation and dilution in the plasmodia ofPhysarum polycephalum during periods of growth and differentiation (spherule formation). The total protein content decreased during starvation, but protein synthesis still occurred, probably at the expense of proteins previously synthesized during growth. Studies on leucine incorporation showed that protein synthesized during growth had a greater turnover than did protein formed by starving cultures, when both types of cultures were transferred to starvation conditions. Protein synthesis after prolonged starvation was rapidly and markedly decreased following the inhibition of RNA synthesis, whereas no such direct dependence on RNA synthesis was observed in growing cultures or during early starvation.The kinetics of RNA synthesis and the types of RNA formed were also shown to differ in growth and starvation. RNA turnover was low in growing cultures but substantial in starving cultures that were returned to growth medium. Qualitative differences in pulse-labeled RNA extracted from growing or starving cultures were revealed by methylated-albumin-kieselguhr column chromatography and sucrose gradient centrifugation. In starving cultures proportionately more labeled RNA was found in the lighter, non-ribosomal region of the gradient, and RNA from this region hybridized with denatured DNA to a greater extent than did other RNA fractions.This work was supported in part by Grant CA-07175 from the National Cancer Institute and by a grant from the Alexander and Margaret Stewart Trust Fund. The authors express their appreciation to Dr. H. Kubinski for helpful suggestions.One of us (H.W.S.) was in part supported by the Deutsche Forschungsgemeinschaft.  相似文献   

16.
A Boyd  I B Holland 《Cell》1979,18(2):287-296
We have studied the biogenesis of the envelope of E. coli B/r by measuring the synthesis of protein in separated inner and outer membranes during the cell cycle. While total protein and bulk inner membrane protein were synthesized continuously and at an exponentially increasing rate throughout the cycle, bulk outer membrane protein was synthesized at a constant rate throughout the cycle with an abrupt doubling in rate occurring 10–15 min before division. A similar pattern was observed when the rate of synthesis of an individual protein, the 36.5K outer membrane protein, was measured directly in total cell lysates. Neither thymine starvation nor changes in gene dosage of exponential cultures affected the synthesis of outer membrane protein, indicating that the doubling in rate is not controlled by a gene duplication mechanism. Other findings, however, further indicate that outer membrane protein synthesis is regulated in some way. Thus the concentration of 36.5K porin per unit surface area remained constant as the surface area/volume ratio varied widely with growth rate. We also obtained direct evidence for an overall limitation on the rate of synthesis of bulk outer membrane proteins; when a new class of outer membrane proteins was induced, the rate of synthesis of other surface proteins was correspondingly reduced. On the basis of these results, we discuss a model in which the linear growth of outer membrane protein results from a limitation of outer membrane polypeptide synthesis at the translational level, reflecting the linear expansion of the underlying peptidoglycan layer in the envelope.  相似文献   

17.
Protein synthesis and degradation were measured in the hearts of rats fed on diets containing 27% of calories as ethanol. Feeding of ethanol decreased the rate of synthesis of mixed cardiac proteins but was without effect on the rate of breakdown of myofibrillar and sarcoplasmic proteins. Concentrations of RNA in the hearts were not altered by ethanol feeding, indicating a decrease in RNA activity for protein synthesis.  相似文献   

18.
We examined the changes induced by daily treadmill exercise on body weights, plantaris muscle weights, plantaris protein concentrations, and L-leucine-4,5-3H incorporation into plantaris muscles of normal and castrated young male guinea pigs and of castrated animals receiving testosterone replacement therapy, and compared the testosterone-1,2-3H uptake by plantaris muscles of trained normal guinea pigs to that of untrained animals. Trained animals exhibited significantly lower body and muscle weights and greater labeled leucine incorporation into sarcoplasmic and myofibrillar proteins but did not show significant changes in protein concentrations or labeled testosterone uptake. The level of physical activity of the young animals studied appeared to be more important than gonadal endocrine function in altering protein metabolism and muscle and body weights. Because hypertrophy did not occur in the trained plantaris muscles, which had elevated rates of labeled leucine incorporation, it appears that the trained animals had a higher muscle protein turnover rate. It seems unlikely that testosterone plays an important role in these activity-related phenomena.  相似文献   

19.
Skeletal muscle protein turnover has been examined in thyroidectomized rats treated with 0, 0.3, 0.75, 2, 20 and 100 micrograms triidothyronine/day for 7 days by implanted osmotic minipump. Protein synthesis in gastrocnemius, plantaris and soleus muscle were measured in vivo by the constant infusion method and protein degradation estimated as the difference between gross and net rates of synthesis. Serum levels of triidothyronine (T3) and insulin were also measured in addition to oxygen consumption rates in some cases. Compared with untreated intact rats muscle growth rates were unchanged at 0.3, 0.75 and 2 micrograms T3/day and, judging by plasma T3 levels, 0.75 microgram T3/day was a replacement dose. Slowing of growth was evident in the untreated thyroidectomized rats mid-way through the 7 day experimental period (6-7 days after throidectomy). High doses of T3 (20 and 100 micrograms/day) promptly supressed growth but there was subsequent recovery. Protein synthesis and degradation were generally lower in the hypothyroid state and normal or elevated in the hyperthyroid state. The changes in protein synthesis were mediated by changes in both RNA concentration and RNA activity (protein synthesis per unit RNA). Gastrocnemius and plantaris muscles were most responsive in the hypothyroid range. Since protein synthesis is particularly depressed in these muscles in malnutrition, the fall in protein degradation induced by the lowered thyroid status in this condition will be an important adaptive response to conserve protein. The increased protein turnover in the hyperthyroid rats was most marked in the soleus muscle and it is argued that this is necessary to allow the changes in protein composition and metabolic character which occur in response to hyperthyroidism in this muscle.  相似文献   

20.
Disproportionate reduction of actin synthesis in hearts of starved rats   总被引:1,自引:0,他引:1  
We examined the synthesis of proteins in rat myocardium after starvation. Rates of total protein synthesis in myofibrillar and nonmyofibrillar fractions of myocardium of starved animals were reduced similarly (to 70-80% of the rates in hearts of fed animals, p less than 0.002), but rates of synthesis of some individual proteins were affected discoordinately. Radiolabeled proteins from atrial and ventricular explants, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed that starvation for 2 days reduced the rate of cardiac actin synthesis to 26-38% of control levels, while the rate of myosin heavy chain synthesis in the same hearts was only moderately reduced (74-80% of control levels). This starvation-induced reduction in actin synthesis could be accounted for at least in part by disproportionately decreased levels of actin mRNA in starved hearts, as revealed by Northern blot hybridization and by in vitro translation analysis. The dramatic decrease in cardiac actin synthesis was rapidly reversible, and actin synthesis returned to normal after a single day of refeeding. The selective reduction of actin synthesis after starvation was specific for the heart: rates of myosin heavy chain and actin synthesis in skeletal muscles (soleus and extensor digitorum longus) were coordinately reduced in response to starvation. To our knowledge, this is the first example of such dramatic discoordinate regulation of myofibrillar protein synthesis in response to a physiological stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号