首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of seven plasmids (77 to 135 kb in size) of the P-7 incompatibility group that are responsible for the biodegradation of naphthalene and salicylate has shown that the main natural host of IncP-7 plasmids is the species Pseudomonas fluorescens. The IncP-7 plasmids are structurally diverse and do not form groups, as is evident from their cluster analysis. The naphthalene catabolism genes of six of the IncP-7 plasmids are conservative and homologous to the catabolic genes of NAH7 and pDTG1 plasmids. The pAK5 plasmid contains the classical nahA gene, which codes for naphthalene dioxygenase, and the salicylate 5-hydroxylase gene (nagG) sequence, which makes the conversion of salicylate to gentisate possible.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 342–348.Original Russian Text Copyright © 2005 by Izmalkova, Sazonova, Sokolov, Kosheleva, Boronin.  相似文献   

2.
A large collection of naphthalene-degrading fluorescent Pseudomonas strains isolated from sites contaminated with coal tar and crude oil was screened for the presence of IncP-9 plasmids. Seventeen strains were found to carry naphthalene catabolic plasmids ranging in size from 83 to 120 kb and were selected for further study. Results of molecular genotyping revealed that 15 strains were closely related to P. putida, one to P. fluorescens, and one to P. aeruginosa. All catabolic plasmids found in these strains, with the exception of pBS216, pSN11, and p8909N-1, turned out to belong to IncP-9 beta-subgroup. Plasmids pBS216, pSN11, and p8909N-1 were identified as members of IncP-9 delta-subgroup. One plasmid, pBS2, contains fused replicons of IncP-9beta and IncP-7 groups. RFLP analyses of the naphthalene catabolic plasmids revealed that organisation of the replicon correlates well with the overall plasmid structure. Comparative PCR studies with conserved oligonucleotide primers indicated that genes for key enzymes of naphthalene catabolism are highly conserved among all studied plasmids. Three bacterial strains, P. putida BS202, P. putida BS3701, and P. putida BS3790, were found to have two different salicylate hydroxylase genes one of which has no similarity to the "classic" enzyme encoded by nahG gene. Discovery of a large group of plasmid with unique nahR suggested that the regulatory loop may also represent a variable part of the pathway for catabolism of naphthalene in fluorescent Pseudomonas spp.  相似文献   

3.
IncP-7 naphthalene-degradative plasmids from Pseudomonas putida   总被引:2,自引:0,他引:2  
Abstract Seven naphthalene-degrading and two naphthalene and camphor-degrading Pseudomonas putida strains were isolated from marine sediments. Most of them carried two plasmids, of molecular size 60 and 200 kb. The naphthalene and salicylate metabolism determinants were transferred to a P. putida strain by conjugation, and the transconjugants acquired either both plasmids or only the 200-kb one. These plasmids appear to belong to the IncP-7 group and encode for catabolism of naphthalene and salicylate, but not camphor.  相似文献   

4.
Fourteen conjugative naphthalene degradative plasmids have been classified by incompatibility. It is shown that the plasmids of IncP-9 group are characterized by the minor entry exclusion, with respect to the R plasmids belonging to IncP-2 or IncP-7 groups. On the other hand, the naphthalene degradative plasmids of incompatibility group P-7 exhibit a markedly pronounced entry exclusion, with respect to the R plasmids of the same incompatibility groups. Two naphthalene degradative plasmids reveal incompatibility with the reference plasmids of two Inc groups (P-2 and P-7). These plasmids control also resistance of bacterial cells to potassium tellurite, which is characteristic of the IncP-2 plasmids. Two other naphthalene degradative plasmids are capable of stable coexistence with the IncP-2, P-7 or P-9 reference plasmids.  相似文献   

5.
Two different cultivation-independent approaches were applied to isolate genes for naphthalene dioxygenase (NDO) from oil-contaminated soil in Japan. One approach was the construction of a broad-host-range cosmid-based metagenomic DNA library, and the other was the so-called exogenous plasmid isolation technique. Our screening of NDO genes in both approaches was based on the functional complementation of Pseudomonas putida strains which contained Tn4655K, a transposon carrying the entire set of naphthalene-catabolic (nah) genes but lacking the NDO-encoding gene. We obtained in the former approach a cosmid clone (pSLX928-6) that carried an nah upper pathway operon for conversion of naphthalene to salicylate, and this operon showed a significantly high level of similarity to the corresponding operon on an IncP-9 naphthalene-catabolic plasmid, pDTG1. In the latter approach, the microbial fraction from the soil was mated with a plasmid-free P. putida strain containing a chromosomal copy of Tn4655K, and transconjugants were obtained that received either a 200- or 80-kb plasmid containing all the nah genes for the complete degradation of naphthalene. Subsequent analysis revealed that (1) both plasmids belong to the IncP-9 incompatibility group; (2) their nah upper pathway operons are significantly similar, but not completely identical, to those of pDTG1 and pSLX928-6; and (3) these plasmids carried genes for the salicylate metabolism by the meta-cleavage pathway. A.O. and R.M. contributed equally to this work.  相似文献   

6.
The genetic systems that are responsible for naphthalene catabolism were analyzed in 18 naphthalene-degrading Pseudomonas fluorescens strains isolated from oil-contaminated soils in different regions of Russia. It was found that thirteen strains contain plasmids, from 20 to 120 kb in size, at least five of which are conjugative and bear the catabolic genes responsible for the complete utilization of naphthalene and salicylate. Five plasmids belong to the P-7 incompatibility group, and two plasmids belong to the P-9 incompatibility group. The naphthalene biodegradation genes of P. fluorescens are highly homologous to each other. The study revealed a new group of the nahAc genes and two new variants of the nahG gene. The suggestion is made that the key genes of naphthalene biodegradation, nahAc and nahG, evolve independently and occur in P. fluorescens strains in different combinations.  相似文献   

7.
K M Yen  M Sullivan  I C Gunsalus 《Plasmid》1983,9(2):105-111
Introduction of the transposon Tn5 to serve as a marker allows electron microscope heteroduplex mapping of the naphthalene oxidation genes on the approximately 83-kb NAH7 and the related approximately 85-kb SAL1 plasmids. The electron microscope-mapped gene positions on the NAH7 plasmid are in close agreement with those mapped previously by restriction digestion. The SAL1 plasmid can be considered as a mutant NAH7 plasmid which fails to direct the conversion of naphthalene to salicylate because of a mutational block but retains intact coding sequences for salicylate oxidation. Analysis of heteroduplex molecules formed between the SAL1 and NAH7::Tn5 EcoRI fragments and the known NAH7/SAL1 homology strongly suggest that the SAL1 DNA is completely homologous to NAH7 DNA except that a approximately 2.5-kb DNA segment constituting most of the nahA gene is replaced by approximately 4.6-kb nonhomologous DNA.  相似文献   

8.
A basic replicon of the naphthalene degradation plasmid pFME5 (80 kb, IncP-7) has been constructed and sequenced. The nucleotide sequence of pFME5mini is almost identical to replicons of the pND6-1 subgroup, which was separated based on the repA-oriV homology in our previous work. The basic replicon of pFME5 is capable of replication and stable maintenance exclusively in Pseudomonas species. An analysis of the deletion mutation indicated that, in contrast to the parWAB region, the parC gene is not essential for the stability of pFME5mini and this can be a common feature of IncP-7 replicons. We revealed that par-defective mutants of pFME5mini were slowly eliminated from the bacterial population in a nonselective medium compared to their pCAR1-based counterparts. Designed primers specific to the repA and parC genes can be used to detect IncP-7 plasmids, while primers specific to two variants of parA can be used for intragroup classification.  相似文献   

9.
The genetic systems that are responsible for naphthalene catabolism were analyzed in 18 naphthalene-degrading Pseudomonas fluorescens strains isolated from oil-contaminated soils in different regions of Russia. It was found that 13 strains contain plasmids, from 20 to 120 kb in size, at least 5 of which are conjugative and bear the catabolic genes responsible for the complete utilization of naphthalene and salicylate. Five plasmids belong to the P-7 incompatibility group, and two plasmids belong to the P-9 incompatibility group. The naphthalene biodegradation genes of P. fluorescens are highly homologous to each other. The study revealed a new group of the nahAc genes and two new variants of the nahG gene. The suggestion is made that the key genes of naphthalene biodegradation, nahAc and nahG, evolve independently and occur in P. fluorescens strains in different combinations.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 70–78.Original Russian Text Copyright © 2005 by Izmalkova, Sazonova, Sokolov, Kosheleva, Boronin.  相似文献   

10.
Biopurification systems (BPS) are used on farms to control pollution by treating pesticide-contaminated water. It is assumed that mobile genetic elements (MGEs) carrying genes coding for enzymes involved in degradation might contribute to the degradation of pesticides. Therefore, the composition and shifts of MGEs, in particular, of IncP-1 plasmids carried by BPS bacterial communities exposed to various pesticides, were monitored over the course of an agricultural season. PCR amplification of total community DNA using primers targeting genes specific to different plasmid groups combined with Southern blot hybridization indicated a high abundance of plasmids belonging to IncP-1, IncP-7, IncP-9, IncQ, and IncW, while IncU and IncN plasmids were less abundant or not detected. Furthermore, the integrase genes of class 1 and 2 integrons (intI1, intI2) and genes encoding resistance to sulfonamides (sul1, sul2) and streptomycin (aadA) were detected and seasonality was revealed. Amplicon pyrosequencing of the IncP-1 trfA gene coding for the replication initiation protein revealed high IncP-1 plasmid diversity and an increase in the abundance of IncP-1β and a decrease in the abundance of IncP-1ε over time. The data of the chemical analysis showed increasing concentrations of various pesticides over the course of the agricultural season. As an increase in the relative abundances of bacteria carrying IncP-1β plasmids also occurred, this might point to a role of these plasmids in the degradation of many different pesticides.  相似文献   

11.
The genes encoding the enzymes responsible for conversion of naphthalene to 2-hydroxymuconic acid (nahA through nahI) are contained on a 25-kilobase EcoRI fragment of an 85-kilobase NAH plasmid of Pseudomonas putida. These genes were cloned into the plasmid vectors pBR322 and RSF1010 to obtain the recombinant plasmids pKGX505 and pKGX511, respectively. To facilitate cloning and analysis, an NAH7 plasmid containing a Tn5 transposon in the salicylate hydroxylase gene (nahG) was used to derive the EcoRI fragment. The genes for naphthalene degradation were expressed at a low level in Escherichia coli strains containing the fragment on the recombinant plasmids pKGX505 or pKGX511. This was shown by the ability of whole cells to convert naphthalene to salicylic acid and by in vitro enzyme assays. The expression of at least two of these genes in E. coli appeared to be regulated by the presence of the inducer salicylic acid. In addition, high-level expression and induction appear to be mediated by an NAH plasmid promoter and a regulatory gene located on the fragment. A restriction endonuclease cleavage map of the cloned fragment was generated, and the map positions of several nah genes were determined by analysis of various subcloned DNA fragments.  相似文献   

12.
The stability of biodegradation plasmids NPL-1 and NPL-41, which control the synthesis of enzymes for naphthalene oxidation to salicylate, was studied in Pseudomonas putida BSA under the conditions of its continuous cultivation with limitation in glucose or salicylate in the chemostat regime and without limitation in the pH-stat regime. Plasmid NPL-1, which controls the inducible synthesis of naphthalene oxygenase, is stable in the population of P. putida cells under the conditions of continuous cultivation on glucose, but is not stable in the course of cultivation on salicylate, an inductor of the naphthalene oxygenase synthesis. Plasmid NPL-41, which controls the constitutive synthesis of naphthalene oxygenase, is not stable in the population of P. putida cells under the conditions of continuous cultivation on glucose. The operation of genes, which control the oxidation of naphthalene to salicylate (nah), makes plasmids NPL-1 and NPL-41 unstable under the conditions of continuous cultivation in the absence of naphthalene from the medium, i.e. under the conditions when the expression of these genes is not necessary. In that case, cells containing plasmids with a deletion of nah-genes as well as cells without plasmids appear in the population of P. putida, which causes a decline in its futile energy and metabolic processes.  相似文献   

13.
Pseudomonas putida PMD-1 dissimilates naphthalene (Nah), salicylate (Sal), and benzoate (Ben) via catechol which is metabolized through the meta (or alpha-keto acid) pathway. The ability to utilize salicylate but not naphthalene was transferred from P. putida PMD-1 to several Pseudomonas species. Agarose gel electrophoresis of deoxyribonucleic acid (DNA) from PMD-1 and Sal+ exconjugants indicated that a plasmid (pMWD-1) of 110 megadaltons is correlated with the Sal+ phenotype; restriction enzyme analysis of DNA from Sal+ exconjugants indicated that plasmid pMWD-1 was transmitted intact. Enzyme analysis of Sal+ exconjugants demonstrated that the enzymes required to oxidize naphthalene to salicylate are absent, but salicylate hydroxylase and enzymes of the meta pathway are present. Thus, naphthalene conversion to salicylate requires chromosomal genes, whereas salicylate degradation is plasmid encoded. Comparison of restriction digests of plasmid pMWD-1 indicated that it differs considerably from the naphthalene and salicylate degradative plasmids previously described in P. putida.  相似文献   

14.
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.  相似文献   

15.
The naphthalene-catabolic (nah) genes on the incompatibility group P-9 (IncP-9) self-transmissible plasmid NAH7 from Pseudomonas putida G7 are some of the most extensively characterized genetic determinants for bacterial aerobic catabolism of aromatic hydrocarbons. In contrast to the detailed studies of its catabolic cascade and enzymatic functions, the biological characteristics of plasmid NAH7 have remained unclear. Our sequence determination in this study together with the previously deposited sequences revealed the entire structure of NAH7 (82,232 bp). Comparison of NAH7 with two other completely sequenced IncP-9 catabolic plasmids, pDTG1 and pWW0, revealed that the three plasmids share very high nucleotide similarities in a 39-kb region encoding the basic plasmid functions (the IncP-9 backbone). The backbone of NAH7 is phylogenetically more related to that of pDTG1 than that of pWW0. These three plasmids carry their catabolic gene clusters at different positions on the IncP-9 backbone. All of the NAH7-specified nah genes are located on a class II transposon, Tn4655. Our analysis of the Tn4655-encoded site-specific recombination system revealed that (i) a novel tyrosine recombinase, TnpI, catalyzed both the intra- and intermolecular recombination between two copies of the attI site, (ii) the functional attI site was located within a 119-bp segment, and (iii) the site-specific strand exchange occurred within a 30-bp segment in the 41-bp CORE site. Our results and the sequence data of other naphthalene-catabolic plasmids, pDTG1 and pND6-1, suggest a potential role of the TnpI-attI recombination system in the establishment of these catabolic plasmids.  相似文献   

16.
Although it is generally assumed that mobile genetic elements facilitate the adaptation of microbial communities to environmental stresses, environmental data supporting this assumption are rare. In this study, river sediment samples taken from two mercury-polluted (A and B) and two nonpolluted or less-polluted (C and D) areas of the river Nura (Kazakhstan) were analyzed by PCR for the presence and abundance of mercury resistance genes and of broad-host-range plasmids. PCR-based detection revealed that mercury pollution corresponded to an increased abundance of mercury resistance genes and of IncP-1beta replicon-specific sequences detected in total community DNA. The isolation of IncP-1beta plasmids from contaminated sediments was attempted in order to determine whether they carry mercury resistance genes and thus contribute to an adaptation of bacterial populations to Hg pollution. We failed to detect IncP-1beta plasmids in the genomic DNA of the cultured Hg-resistant bacterial isolates. However, without selection for mercury resistance, three different IncP-1beta plasmids (pTP6, pTP7, and pTP8) were captured directly from contaminated sediment slurry in Cupriavidus necator JMP228 based on their ability to mobilize the IncQ plasmid pIE723. These plasmids hybridized with the merRTDeltaP probe and conferred Hg resistance to their host. A broad host range and high stability under conditions of nonselective growth were observed for pTP6 and pTP7. The full sequence of plasmid pTP6 was determined and revealed a backbone almost identical to that of the IncP-1beta plasmids R751 and pB8. However, this is the first example of an IncP-1beta plasmid which had acquired only a mercury resistance transposon but no antibiotic resistance or biodegradation genes. This transposon carries a rather complex set of mer genes and is inserted between Tra1 and Tra2.  相似文献   

17.
Summary TOL plasmid pWW0 and plasmid NAH7 encode catabolic enzymes required for oxidative degradation of toluene and naphthalene, respectively. The gene order of the catabolic operon of NAH7 for salicylate oxidation was determined to be: promoter-nahG (the structural gene for salicylate hydroxylase)-nahH (catechol 2,3-dioxygenase)-nahI (hydroxymuconic semialdehyde dehydrogenase)-nahN (hydroxymuconic semialdehyde hydrolase)-nahL (2-oxopent-4-enoate hydratase). This order is identical to that of the isofunctional genes of TOL plasmid pWW0. The complete nucleotide sequence of nahH was determined and compared with that of xylE, the isofunctional gene of TOL plasmid pWW0. There were 20% and 16% differences in their nucleotide and amino acid sequences, respectively. The homology between the NAH7 and TOL pWW0 plasmids ends upstream of the Shine-Dalgarno sequences of nahH and xylE, but the homology continues downstream of these genes. This observation suggested that genes for the catechol oxidative enzymes of NAH7 and TOL pWW0 were derived from a common ancestral sequence which was transferred as a discrete segment of DNA between plasmids.  相似文献   

18.
Sixty-three strains of bacteria capable of utilizing naphthalene as the sole source of carbon and energy were isolated from 137 samples of soil taken in different sites in Belarus. All isolated bacteria contained extrachromosomal genetic elements of 45 to 150 kb in length. It was found that bacteria of 31 strains contained the IncP-9 incompatibility group plasmids, bacteria of one strain carried a plasmid containing replicons IncP-9 and IncP-7, and bacteria of 31 strains contained unidentified plasmids. Primary identification showed that the hosts of plasmids of naphthalene biodegradation are fluorescent bacteria of the genus Pseudomonas (P. putida and P. aeruginosa; a total of 47 strains) and unidentified nonfluorescent microorganisms (a total of 16 strains). In addition to the ability to utilize naphthalene, some strains exhibited the ability to stimulate the growth and development of the root system of Secale cereale.Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 2, 2005, pp. 162–167.Original Russian Text Copyright © 2005 by Levchuk, Vasilenko, Bulyga, Titok, Thomas.  相似文献   

19.
Rep-mob loci of naphthalene degradative plasmid pBS286 (IncP-9) have been cloned on the Escherichia coli vectors pUC19 and pUBR322. These loci confer to recombinant plasmids pBS952 and pBS953 the ability for effective mobilization by RP4 (IncP-1) and F plasmid, as well as constant maintenance in various gram-negative bacteria. Localization of cloned sequences in the restriction fragments of conservative part of the pBS286 genome was established. The data obtained correlate with the analysis of plasmids pBS950 and pBS951 which are spontaneous mini-derivatives of pBS286 and pBS292 (delta NPL1::Tn1/Tra+ Nah-) plasmids formed during transformation of E. coli HB101 cells. Plasmids pBS952 and pBS953 retain the incompatibility properties of parental IncP-9 replicon. These recombinant derivatives can be used for construction of bhr vectors with required properties and compatible with bhr vectors constructed on the basis of plasmids from the IncP-1 and IncP-4 groups.  相似文献   

20.
T V Tso?  I A Kosheleva  A M Boronin 《Genetika》1986,22(11):2702-2712
The hybridization and restriction analysis of the plasmid pBS286 (73 Kb, the P-9 Inc group) as well as parental plasmids NPL-1, NPL-41 demonstrated that pBS286 plasmid (delta NPL-41::TnA) with the constitutive synthesis of naphthalene dioxygenase carried genes for naphthalene oxidation to salicylate and those participating in degradation of catechol. Restriction map of pBS286 using XhoI restriction endonuclease and that of the nah region using EcoRI, BamHI, SalI and XhoI were established. Structural peculiarities of nah genes from pBS286 are compared with previously described NAH7. Some nah genes were localized. An inverted DNA segment involved in nah gene regulation was shown to be closely linked to a proximal part of the nah1 operon or overlapped. Possible occurrence of a regulatory R locus in this region is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号