首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphofructokinase (EC 2.7.1.11) is a major enzyme of the glycolytic pathway, catalyzing the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate. In this study, we demonstrated the effect of ribose 1,5-bisphosphate on phosphofructokinase purified from rat kidney cortex. Ribose 1,5-bisphosphate relieved the phosphofructokinase from ATP inhibition and increased the affinity for fructose 6-phosphate at nanomolar concentrations. These activating effects of ribose 1,5-bisphosphate were enhanced in the presence of AMP. Ribose 1,5-bisphosphate reduced the inhibition of the phosphofructokinase induced by citrate. These results suggest that ribose 1,5-bisphosphate is an activator of rat kidney cortex phosphofructokinase and synergistically regulates the enzyme activity with AMP.  相似文献   

2.
Fructose 6-sulfate was synthesized by direct sulfurylation of fructose and was isolated by two selective steps: (a) conversion of the 6-sulfuryl ester to fructose 1-phosphate-6-sulfate with phosphofructokinase; (b) conversion of fructose 1-phosphate-6-sulfate to fructose 6-sulfate by fructose-1,6-diphosphatase. Utilizing crystalline sheep heart phosphofructokinase, kinetic studies with the alternative substrate were carried out at pH 8.2 which is optimal for nonallosteric kinetics. The data are consistent with an ordered addition of the two substrates with the first, MgATP, being at thermodynamic equilibrium. The Vmax and Km obtained with fructose 6-sulfate were 0.03- and 100-fold, respectively, that obtained with the natural substrate. The study suggests that the divalent phosphoryl moiety is intimately involved in the active site conformation. Identification of the product of the reaction, fructose 1-phosphate-6-sulfate, was confirmed through studies with aldolase, fructose-1,6-diphosphatase, and by 31P NMR. The utilization of fructose 6-sulfate as a substrate by yeast glucose-6-phosphate isomerase could not be demonstrated.  相似文献   

3.
Under conditions used previously for demonstrating glycolytic oscillations in muscle extracts (pH 6.65, 0.1 to 0.5 mM ATP), phosphofructokinase from rat skeletal muscle is strongly activated by micromolar concentrations of fructose diphosphate. The activation is dependent on the presence of AMP. Activation by fructose diphosphate and AMP, and inhibition by ATP, is primarily due to large changes in the apparent affinity of the enzyme for the substrate fructose 6-phosphate. These control properties can account for the generation of glycolytic oscillations. The enzyme was also studied under conditions approximating the metabolite contents of skeletal muscle in vivo (pH 7.0, 10mM ATP, 0.1 mM fructose 6-phosphate). Under these more inhibitory conditions, phosphofructokinase is strongly activated by low concentrations of fructose diphosphate, with half-maximal activation at about 10 muM. Citrate is a potent inhibitor at physiological concentrations, whereas AMP is a strong activator. Both AMP and citrate affect the maximum velocity and have little effect on affinity of the enzyme for fructose diphosphate.  相似文献   

4.
Pyrococcus furiosus uses a modified Embden-Meyerhof pathway involving two ADP-dependent kinases. Using the N-terminal amino acid sequence of the previously purified ADP-dependent glucokinase, the corresponding gene as well as a related open reading frame were detected in the genome of P. furiosus. Both genes were successfully cloned and expressed in Escherichia coli, yielding highly thermoactive ADP-dependent glucokinase and phosphofructokinase. The deduced amino acid sequences of both kinases were 21.1% identical but did not reveal significant homology with those of other known sugar kinases. The ADP-dependent phosphofructokinase was purified and characterized. The oxygen-stable protein had a native molecular mass of approximately 180 kDa and was composed of four identical 52-kDa subunits. It had a specific activity of 88 units/mg at 50 degrees C and a pH optimum of 6.5. As phosphoryl group donor, ADP could be replaced by GDP, ATP, and GTP to a limited extent. The K(m) values for fructose 6-phosphate and ADP were 2.3 and 0.11 mM, respectively. The phosphofructokinase did not catalyze the reverse reaction, nor was it regulated by any of the known allosteric modulators of ATP-dependent phosphofructokinases. ATP and AMP were identified as competitive inhibitors of the phosphofructokinase, raising the K(m) for ADP to 0.34 and 0.41 mM, respectively.  相似文献   

5.
Linked oscillations of the glycolytic pathway and the purine nucleotide cycle were studied in particle-free extracts of rat skeletal muscle. Under the conditions used, an accumulation of about 1 muM fructose diphosphate can trigger a sudden increase in phosphofructokinase activity. The activation by fructose diphosphate depends on the presence of AMP. When the AMP concentration drops, phosphofructokinase becomes inhibited, even though the fructose disphosphate concentration remains high. It is concluded that the oscillatory behavior can be of advantage for maintaining a high average [ATP]/[ADP] ratio.  相似文献   

6.
Kinetic data have been collected suggesting that heterotropic activation by fructose 2,6-bisphosphate and AMP is a result not only of the relief of allosteric inhibition by ATP but is also the result of an increase in the affinity of phosphofructokinase for fructose 6-phosphate. Modification of the Ascaris suum phosphofructokinase at the ATP inhibitory site produces a form of the enzyme that no longer has hysteretic time courses or homotropic positive (fructose 6-phosphate) cooperativity or substrate inhibition (ATP) (Rao, G.S. J., Wariso, B.A., Cook, P.F., Hofer, H.W., and Harris, B.G. (1987a) J. Biol. Chem. 262, 14068-14073). This form of phosphofructokinase is Michaelis-Menten in its kinetic behavior but is still activated by fructose 2,6-bisphosphate and AMP and by phosphorylation using the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK). Fructose 2,6-bisphosphate activates by decreasing KF-6-P by about 15-fold and has an activation constant of 92 nM, while AMP decreases KF-6-P about 6-fold and has an activation constant of 93 microM. Double activation experiments suggest that fructose 2,6-bisphosphate and AMP are synergistic in their activation. The desensitized form of the enzyme is phosphorylated by cAPK and has an increased affinity for fructose 6-phosphate in the absence of MgATP. The increased affinity results in a change in the order of addition of reactants from that with MgATP adding first for the nonphosphorylated enzyme to addition of fructose 6-phosphate first for the phosphorylated enzyme. The phosphorylated form of the enzyme is also still activated by fructose 2,6-bisphosphate and AMP.  相似文献   

7.
In a reconstituted enzyme system multiple stationary states and oscillatory motions of the substrate cycle catalyzed by phosphofructokinase and fructose 1,6-bisphosphatase are significantly influenced by fructose 2,6-bisphosphate. Depending on the initial conditions, fructose 2,6-bisphosphate was found either to generate or to extinguish oscillatory motions between glycolytic and gluconeogenic states. In general, stable glycolytic modes are favored because of the efficient activation of phosphofructokinase by this effector. The complex effect of fructose 2,6-bisphosphate on the rate of substrate cycling correlates with its synergistic cooperation with AMP in the activation of phosphofructokinase and inhibition of fructose 1,6-bisphosphatase.  相似文献   

8.
The physiological role of the inhibition of AMP deaminase (EC 3.5.4.6) by Pi was analyzed using permeabilized yeast cells. (a) Fructose 1,6-bisphosphatase (EC 3.1.3.11) was inhibited only a little by AMP, which was readily degraded by AMP deaminase under the in situ conditions. (b) The addition of Pi, which showed no direct effect on fructose 1,6-bisphosphatase, effectively enhanced the inhibition of the enzyme by AMP increased through the inhibition of AMP deaminase. (c) Pi activated phosphofructokinase (EC 2.7.1.11) and inhibited AMP deaminase activity. AMP deaminase reaction can act as a control system of fructose 1,6-bisphosphatase activity and gluconeogenesis/glycolysis reaction through the change in the AMP level. Pi may contribute to the stimulation of glycolysis through the inhibition of fructose 1,6-bisphosphatase by the increase in AMP in addition to the direct activation of phosphofructokinase.  相似文献   

9.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

10.
1. Phosphofructokinase (EC 2.7.1.11) from chicken erythrocytes is activated by fructose 2,6-bisphosphate, glucose 1,6-bisphosphate and AMP, and it is inhibited by 2,3-bisphosphoglycerate and inositol hexaphosphate. 2. The stimulatory effects produced by the two bisphosphorylated hexoses are additive and the effects produced by fructose 2,6-bisphosphate and by AMP are synergistic. 3. The activatory effect produced by fructose 2,6-bisphosphate is counteracted by fructose 1,6-bisphosphate. 4. The inhibition produced by both 2,3-bisphosphoglycerate and inositol hexaphosphate is released by fructose 2,6-bisphosphate. 5. It is concluded that, like phosphofructokinase from mammalian tissues, the enzyme from chicken erythrocytes can be modulated by the relative concentrations of those metabolites.  相似文献   

11.
1. The properties of phosphofructokinase after its slight purification from the mucosa of rat jejunum were studied. 2. The enzyme is inhibited by almost 100% by an excess of ATP (1.6mm), with 0.2mm-fructose 6-phosphate. AMP, ADP, P(i) and NH(4) (+) at 0.2, 0.76, 1.0 and 2mm respectively do not individually prevent the inhibition of phosphofructokinase activity by 1.6mm-ATP with 0.2mm-fructose 6-phosphate to any great extent, but all of them together completely prevent the inhibition of phosphofructokinase by ATP. 3. One of the effects of high concentrations of ATP on the enzyme was to increase enormously the apparent K(m) value for the other substrate fructose 6-phosphate, and this increase is largely counteracted by the presence of AMP, ADP, P(i) and NH(4) (+). At low concentrations of ATP the above effectors individually decrease the concentration of fructose 6-phosphate required for half-maximum velocity and when present together they decrease it further, in a more than additive way. 4. When fructose 6-phosphate is present at a saturating concentration (5mm), 0.3mm-NH(4) (+) increases the maximum velocity of the reaction 3.3-fold; with 0.5mm-fructose 6-phosphate, 4.5mm-NH(4) (+) is required for maximum effect. The other effectors do not change the maximum reaction velocity. 5. The results presented here suggest that NH(4) (+), AMP, ADP and P(i) synergistically decrease the inhibition of phosphofructokinase activity at high concentrations of ATP by decreasing the concentration of fructose 6-phosphate required for half-maximum velocity. Such synergism among the effectors and an observed, low ;energy charge' [(ATP+(1/2)ADP)/(AMP+ADP+ATP)] in conjunction with the possibility of a relatively high NH(4) (+) and fructose 6-phosphate concentration in this tissue, may keep the mucosal phosphofructokinase active and uninhibited by ATP under aerobic conditions, thus explaining the high rate of aerobic glycolysis and the lack of Pasteur effect in this tissue.  相似文献   

12.
1. Phosphofructokinase from rat liver has been partially purified by ammonium sulphate precipitation so as to remove enzymes that interfere in one assay for phosphofructokinase. The properties of this enzyme were found to be similar to those of the same enzyme from other tissues (e.g. cardiac muscle, skeletal muscle and brain) that were previously investigated by other workers. 2. Low concentrations of ATP inhibited phosphofructokinase activity by decreasing the affinity of the enzyme for the other substrate, fructose 6-phosphate. Citrate, and other intermediates of the tricarboxylic acid cycle, also inhibited the activity of phosphofructokinase. 3. This inhibition was relieved by either AMP or fructose 1,6-diphosphate; however, higher concentrations of ATP decreased and finally removed the effect of these activators. 4. Ammonium sulphate protected the enzyme from inactivation, and increased the activity by relieving the inhibition due to ATP. The latter effect was similar to that of AMP. 5. Phosphofructokinase was found in the same cellular compartment as fructose 1,6-diphosphatase, namely the soluble cytoplasm. 6. The properties of phosphofructokinase and fructose 1,6-diphosphatase are compared and a theory is proposed that affords dual control of both enzymes in the liver. The relation of this to the control of glycolysis and gluconeogenesis is discussed.  相似文献   

13.
R S Liou  S Anderson 《Biochemistry》1980,19(12):2684-2688
Striking effects of F-actin and the reconstituted thin filament of muscle on the catalytic activity of rabbit muscle phosphofructokinase are demonstrated through direct measurements of enzymatic activity by using the pH stat. The addition of F-actin to solutions of phosphofructokinase at low ionic strength (10 mM KCl and 5 mM MgCl2) partially reverses the inhibition of the enzyme seen at high ATP concentrations and increases the apparent affinity of the enzyme for fructose 6-phosphate with slight effect on Vmax. F-Actin augments the activation of the enzyme obtained with AMP and partially counters the inhibition obtained with citrate. The maximum effect in the reversal of ATP inhibition is about the same for combinations of either F-actin or the thin filament with AMP as it is for AMP alone. In general, the effect of F-actin on the catalytic activity of phosphofructokinase is larger than that of the thin filament. The activation of phosphofructokinase by F-actin persists at physiological ionic strength.  相似文献   

14.
Human erythrocyte phosphofructokinase was purified 150 fold by DEAE cellulose adsorption and ammonium sulfate precipitation.At pH 7,5 the enzyme exhibits allosteric kinetics with respect to ATP, fructose 6 phosphate, and Mg2+.ATP at high concentration acted as an inhibitor and ADP, 5′AMP, 3′,5′, AMP, acted as activators. Both effectors seemed to decrease the homotropic interactions beetween the fructose 6 phosphate molecules.The activators increased the affinity of phosphofructokinase for the substrate (F6P), the inhibitor decreased it.These ligands had no effect on the maximum velocity of the reaction except in the case of ADP.Interactions between the substrates and the effector ligands on the enzyme were considered in terms of the Monod - Changeux - Wyman model for allosteric proteins.With GTP and ITP, no inhibition was observed. At saturing concentration of GTP, ATP still inhibited phosphofructokinase.Both 3′5′ AMP and fructose 6 phosphate increased the concentration of ATP required to produce an inhibition of 50 %.Citrate, like ATP, inhibited phosphofructokinase by binding most likely at the same allosteric site. Erythrocyte phosphofructokinase is inhibited by 2–3 DPG.The study of the relation log V max = f (pH) suggested, that the active center contains at least one imidazole and one sulfhydryl group.  相似文献   

15.
1. Phosphofructokinase from rat kidney cortex has been partially purified by using a combination of isoelectric and ammonium sulphate precipitation. This preparation was free of enzymes which interfered with the measurement of either product of phosphofructokinase. 2. At concentrations greater than the optimum, ATP caused inhibition which was decreased by raising the fructose 6-phosphate concentration. This suggested that ATP reduced the affinity of phosphofructokinase for the other substrate. Citrate potentiated the ATP inhibition. 3. AMP and fructose 1,6-diphosphate relieved the inhibition by ATP or citrate by increasing the affinity of the enzyme for fructose 6-phosphate. 4. K(+) is shown to stimulate and Ca(2+) to inhibit phosphofructokinase. 5. The similarity between the complex properties of phosphofructokinase from kidney cortex and other tissues (e.g. cardiac and skeletal muscle, brain and liver) suggests that the enzyme in kidney cortex tissue is normally subject to metabolic control, similar to that in other tissues.  相似文献   

16.
The regulatory properties of phosphofructokinase from rat mucosa, liver, brain and muscle were investigated. Mucosal phosphofructokinase displayed cooperativity with respect to fructose 6-phosphate at pH 7.0 and so did the muscle, brain and liver isoenzymes. All these four isoenzymes were inhibited by ATP, the mucosal isoenzyme being the least inhibited. They were also inhibited by citrate and creatine phosphate. AMP, ADP, glucose 1,6-diphosphate, fructose 2,6-bisphosphate and inorganic phosphate were all strong activators for the mucosal, brain, liver and muscle phosphofructokinase, but the mucosal isoenzyme was found to be more activated than the others, accounting for the higher rates of glycolysis observed in mucosa. The results suggest that mucosal phosphofructokinase is unique and different from all the other isoenzymes.  相似文献   

17.
Effectors of muscle phosphofructokinase show opposing action on the activity of the enzyme depending upon the concentration of phosphoryl donor employed in the assay. Established inhibitors, such as citrate, activate at low ATP or ITP concentrations while known activators, such as AMP, ADP, and cyclic AMP inhibit at low ATP or ITP concentrations. Inorganic phosphate, on the other hand, activates at all substrate concentrations. The paradoxical effects at low substrate concentrations are dependent upon the order of addition of reaction components. A model is proposed to explain these and other regulatory phenomena of phosphofructokinase.  相似文献   

18.
Fructose-2,6-P2 and fructose-1,6-P2 are strong activators of muscle phosphofructokinase. They have been shown to be competitive in binding studies, and it is generally thought that they affect the physical and catalytic properties of the enzyme in the same manner. However, there are indications in published data that the effects of the two fructose bisphosphates on phosphofructokinase are not identical. To examine this possibility, the kinetics of activation of rat skeletal muscle phosphofructokinase by the two fructose bisphosphates were compared in the presence of other regulatory metabolites. Citrate greatly increased the K0.5 of the enzyme for fructose-2,6-P2, with little effect on the maximum activation. In contrast, citrate greatly decreased the maximum activation by fructose-1,6-P2, with only a small effect on the K0.5. Changes in the concentrations of the inhibitor ATP or the activator AMP similarly altered the K0.5 for fructose-2,6-P2, but altered the maximum activation by fructose-1,6-P2. Finally, when fructose-1,6-P2 was added in the presence of a given concentration of fructose-2,6-P2, phosphofructokinase activity was decreased if the activation by fructose-2,6-P2 alone was greater than the maximum activation by fructose-1,6-P2 alone. These results are consistent with competition of the two fructose bisphosphates for the same binding site, but indicate that the conformational changes produced by their binding are different.  相似文献   

19.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

20.
The positive effector 5′-AMP of yeast phosphofructokinase does not influence the binding of fructose 6-phosphate to the enzyme. Cibacron blue F3G-A considered an ATP analogue decreases the affinity of the enzyme to fructose 6-phosphate without exerting an effect on the cooperativity of fructose 6-phosphate binding. The peculiarities of the interactions of AMP and Cibacron blue with fructose 6-phosphate binding demonstrate compatibility of the allosteric kinetics with the binding behavior of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号