首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The local generation of phosphatidic acid plays a key role in the regulation of intracellular membrane transport through mechanisms which are largely unknown. Phosphatidic acid may recruit and activate downstream effectors, or change the biophysical properties of the membrane and directly induce membrane bending and/or destabilization. To evaluate these possibilities, we determined the phase properties of phosphatidic acid and lysophosphatidic acid at physiological conditions of pH and ion concentrations. In single-lipid systems, unsaturated phosphatidic acid behaved as a cylindrical, bilayer-preferring lipid at cytosolic conditions (37 °C, pH 7.2, 0.5 m m free Mg2+), but acquired a type-II shape at typical intra-Golgi conditions, a mildly acidic pH and submillimolar free Ca2+ (pH 6.6–5.9, 0.3 m m Ca2+). Lysophosphatidic acid formed type-I lipid micelles in the absence of divalent cations, but anhydrous cation-lysophosphatidic acid bilayer complexes in their presence. These data suggest a similar molecular shape for phosphatidic acid and lysophosphatidic acid at cytosolic conditions; however, experiments in mixed-lipid systems indicate that their shape is not identical. Lysophosphatidic acid stabilized the bilayer phase of unsaturated phosphatidylethanolamine, while the opposite effect was observed in the presence of phosphatidic acid. These results support the hypothesis that a conversion of lysophosphatidic acid into phosphatidic acid by endophilin or BARS (50 kDa brefeldin A ribosylated substrate) may induce negative spontaneous monolayer curvature and regulate endocytic and Golgi membrane fission. Alternative models for the regulation of membrane fission based on the strong dependence of the molecular shape of (lyso)phosphatidic acid on pH and divalent cations are also discussed.  相似文献   

2.
We studied the lysophosphatidic acid receptor-1 (LPA1) gene, which we found to be expressed endogenously in cultured hippocampal neurons, and in vivo in young (1-week-old) rat brain slices. Overexpressed green fluorescent protein (GFP)-tagged, membrane-associated LPA1 accumulated in a punctate manner over the entire dendritic tree and caused an increase in dendritic spine density. About half of the dendritic spines in the LPA1-transfected neurons displayed distinct fluorescent puncta, and this subset of spines was also substantially larger than puncta-free, LPA1-transfected or control GFP spines. This phenotype could also be seen in cells transfected with a ligand-binding, defective mutant and is therefore not dependent on interaction with an ambient ligand. While spontaneous miniature excitatory synaptic currents were of the same amplitudes, they decayed slower in LPA1-transfected neurons compared with GFP controls. We propose that LPA1 may play a role in the formation and modulation of the dendritic spine synapse.  相似文献   

3.
Embryonic rat hippocampal neurons were cultured in a serum-free defined medium (MEM/N3) either directly on poly-D -lysine (PDL) or on a confluent monolayer of postnatal cortical astrocytes, C6 glioma cells, or Rat2 fibroblasts. Neurons on PDL were grown in MEM/N3 or in MEM/N3 conditioned for 24 h by astrocytes or C6 cells. Membrane capacitance (Cm) and γ-aminobutyric acid (GABA)-, glycine-, kainate-, and N-methyl-D -aspartate (NMDA)-induced currents were quantified using whole-cell patch-clamp recordings. Cm as well as the amplitude and the density of these currents in neurons cultured on astrocytes were significantly greater than those in neurons grown on PDL after 24 and 48 h. C6 cells mimicked astrocytes in promoting Cm and GABA-, glycine-, and NMDA-evoked, but not kainate-evoked, currents. Cm and currents in neurons grown on Rat2 cells were comparable to those in neurons on PDL. Astrocytes maintained in culture for 3 months were noticeably less effective than freshly prepared ones just grown to confluence. Suppression of spontaneous cytoplasmic Ca2+ (Cac2+) elevations in astrocytes by 1,2-bis(2-aminophenoxy) ehane-N, N, N, N-tetraacetic acid acetoxymethyl ester (BAPTA-AM) loaded intracellularly blocked the observed modulatory effects. Medium conditioned by either astrocytes or C6 cells mimicked the effects of direct coculture of neurons on these cells in promoting Cm and amino acid-evoked currents. Inclusion of antagonists at GABA and glutamate receptors in coculture experiments blocked the observed effects. Thus, diffusible substances synthesized and/or secreted by astrocytes in a Cac2+-dependent manner can regulate neuronal growth and aminoacid receptor function, and these effects may involve neuronal GABA and glutamate receptors. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 848–864, 1997  相似文献   

4.
The lipid second messenger, phosphatidic acid, inhibits the intrinsic tyrosine kinase activity of the insulin receptor in detergent-lipid mixed micelles or in reconstituted membranes. Enzymatic studies revealed that this lipid second messenger inhibits the catalytic activity of partially purified insulin receptor without affecting the affinity of the receptor for insulin. Selectivity in the protein-lipid interaction is suggested by the inability of several other acidic lipids to affect the kinase activity of the receptor and by the relative insensitivity of the inhibition to increasing ionic strength and, in some cases, micelle surface charge. Lysophosphatidic acid and phosphatidic acids with short acyl chains do not affect significantly the receptor's kinase activity, suggesting that hydrophobic interactions are involved in the inhibition. Thus, both a high affinity interaction of the insulin receptor with the phosphate headgroup and a stabilizing hydrophobic interaction with the acyl chains contribute to the inhibitory protein-lipid interaction. The selective sensitivity of the insulin receptor to phosphatidic acid suggests that the receptor-mediated generation of this lipid in the plasma membrane could negatively modulate insulin receptor function. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Cui HL  Qiao JT 《生理学报》2007,59(6):759-764
本研究用免疫细胞化学荧光双标技术观察了溶血磷脂酸(lysophosphatidic acid,LPA)对大鼠胚胎神经干细胞(neural stem cells,NSCs)分化为少突胶质细胞(galactocerebroside—positive,Gal-C阳性)和星形胶质细胞(grim fibrillary acidic protein-positive,GFAP阳性)的影响,并且用RT-PCR技术对NSCs可能表达的LPA受体进行分析。结果显示:(1)加入不同浓度(0.010.0μmol/L)LPA,第7天进行检测时,少突胶质细胞数量呈明显的剂量依赖性增加,峰值出现在1.0μmol/LLPA组,少突胶质细胞所占百分比从对照组的8.5%增加到32.6%;(2)星形胶质细胞的分化几乎不受LPA的影响,第7天时各LPA处理组星形胶质细胞百分比与对照组相比均无显著性差异;(3)RT-PCR结果显示,大鼠胚胎NSCs的LPA1和LPA3受体表达明显,而LPA3受体表达很弱。以上结果表明,较低浓度的LPA可能作为细胞外信号,通过LPA1和LPA3受体促进大鼠胚胎NSCs向少突胶质细胞分化和生成,但对星形胶质细胞的分化过程无明显影响。  相似文献   

6.
Cui HL  Qiao JT 《生理学报》2006,58(6):547-555
溶血磷脂酸(1ysophosphatidic acid,LPA)是一种细胞外磷脂信号。本研究用[^3H]-胸腺嘧啶掺入法、免疫细胞化学和Western blot等技术,观察了LPA对体外培养的大鼠胚胎神经干细胞(neural stem cells,NSCs)的增殖以及向MAF2标记的一般神经元和ChAT标记的胆碱能神经元的分化的影响。结果显示:(1)在特殊的无血清培养基中加入低浓度的LPA(0.01-1.0μmol/L)后,NSCs对【^3H】-胸腺嘧啶的摄入呈剂量依赖性增加,表明LPA对NSCs有显著的促增殖作用;(2)在培养基中加入胎牛血清以诱导NSCs的分化,发现低浓度的LPA增加MAF2阳性和ChAT阳性神经元的比例,0.1μmol/L LPA引起的增加达到峰值;(3)Western blot分析显示LPA促进了MAP2和ChAT的表达;(4)在诱导NSCs出现分化早期,用倒置显微镜观察到低浓度的LPA明显促进细胞突起的生长和细胞的迁移。以上结果表明,低浓度LPA在一定范围内可以促进NSCs的增殖、并分化为一般的MAP2阳性神经元和特殊的胆碱能神经元,而且LPA可以促进在分化早期出现的神经元或神经胶质细胞前体细胞的迁移和突起生长。  相似文献   

7.
Docosahexaenoic acid promotes neurite growth in hippocampal neurons   总被引:3,自引:0,他引:3  
Docosahexanoic acid (22:6n-3; DHA) deficiency during development is associated with impairment in learning and memory, suggesting an important role of DHA in neuronal development. Here we provide evidence that DHA promotes neuronal differentiation in rat embryonic hippocampal primary cultures. DHA deficiency in vitro was spontaneously induced by culturing hippocampal cells in chemically defined medium. DHA supplementation improved DHA levels to values observed in freshly isolated hippocampus. We found that DHA supplementation in culture increased the population of neurons with longer neurite length per neuron and with higher number of branches. However, supplementation with arachidonic, oleic or docosapentaenoic acid did not have any effect, indicating specificity of the DHA action on neurite growth. Furthermore, hippocampal cultures obtained from n-3 fatty acid deficient animals contained a lower DHA level and a neuronal population with shorter neurite length per neuron in comparison to those obtained from animals with adequate n-3 fatty acids. DHA supplementation to the deficient group recovered the neurite length to the level similar to n-3 fatty acid adequate cultures. Our data demonstrates that DHA uniquely promotes neurite growth in hippocampal neurons. Inadequate neurite development due to DHA deficiency may contribute to the cognitive impairment associated with n-3 fatty acid deficiency.  相似文献   

8.
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.  相似文献   

9.
Isolation and identification of phosphatidic acid targets from plants   总被引:2,自引:0,他引:2  
Phosphatidic acid (PA) is emerging as an important lipid signalling molecule. In plants, it is implicated in various stress-signalling pathways and is formed in response to wounding, osmotic stress, cold stress, pathogen elicitors, Nod factors, ethylene and abscisic acid. How PA exerts its effects is still unknown, mainly because of the lack of characterized PA targets. In an approach to isolate such targets we have used PA-affinity chromatography. Several PA-binding proteins were present in the soluble fraction of tomato and Arabidopsis cells. Using mass spectrometric analysis, several of these proteins, including Hsp90, 14-3-3 proteins, an SnRK2 serine/threonine protein kinase and the PP2A regulatory subunit RCN1 could be identified. As an example, the binding of one major PA-binding protein, phosphoenolpyruvate carboxylase (PEPC), was characterized further. Competition experiments with different phospholipids confirmed specificity for PA. Hypo-osmotic treatment of the cells increased the amount of PEPC that bound the PA beads without increasing the absolute amount of PEPC. This suggests that PEPC's affinity for PA had increased. The work shows that PA-affinity chromatography/mass spectrometry is an effective way to isolate and identify PA-binding proteins from plants.  相似文献   

10.
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]α-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.  相似文献   

11.
Qu L  Wan J  Cao Y  Zhang Y  Chen R  Huang Y 《Proteins》2008,71(4):1732-1743
G proteins are the molecular switches of G-protein-coupled signal transmembrane transduction, which plays a pivotal role in diverse cellular processes. The guanine nucleotide binding states of Galpha-subunits are considered key factors for their functions. We report here that phosphatidic acid (PA) inhibits the [(35)S]-GTPgammaS binding activity of Goalpha. To elucidate this inhibitory effect, biochemical analyses are carried out and a structure-based model is proposed. The experimental results show that PA particularly inhibits the activity of the Goalpha in a dose-dependent manner, whereas other lipids tested do not. Further analysis on the effects of PA analogs demonstrate that a phosphate head group together with at least one fatty acid chain is necessary for the inhibition. Using a lipid-protein binding assay, it is shown that Goalpha specifically and directly interacts with PA. In addition to these experimental studies, a 3D structure of Goalpha is constructed, based on sequence homology greater than 70% to E. coli Gialpha(1). Molecular docking is performed with PA and PA analogs, and the results are compared and analyzed. Collectively, the results of this investigation provide direct experimental evidence for an inhibitory effect of PA on GTP binding activity of Goalpha, and also suggest a structural model for the inhibitory mechanism. The lipid-protein model suggests that PA may occupy the channel for exchanging guanine nucleotides, thus leading to the inhibition. These findings reveal a potential new drug target for the diseases caused by genetic G-protein abnormalities.  相似文献   

12.
Phosphatidic acid (PA) has been previously shown to activate specifically some of the isoforms of type 4 cylic nucleotide phosphodiesterases (PDE-4) in an acellular system. In the present work, we have investigated the mechanism of PA-activating effect by using a recombinant PA-sensitive isoform, PDE-4D3. The enzyme was specifically activated by acidic phospholipids, but not by zwitterionic phospholipids or anionic detergents. The importance of the role of PA acidic groups in the activation process was confirmed by studying the influence of pH and ionic strength on activation. Crosslinking experiments suggested that PA might influence the ability of PDE-4D3 to form dimers. Binding studies performed with radiolabeled PA showed that PA binds to a PDE-4D3 preparation in a saturable manner. Specifically bound PA was displaced by anionic, but not by zwitterionic phospholipids. With a preparation of PDE-4B2, a PDE-4 isoform insensitive to PA activation, PA binding was only displaced by high concentrations of unlabeled PA, suggesting that high-affinity PA binding sites are only present on PDE-4D3. These data support the hypothesis that PA-activating effect depends on direct binding of the effector on specific sites carried by the PDE-4D3 protein.  相似文献   

13.
Vitamin A-derived retinoic acids (RAs) are known to exert a variety of biological actions, including modulatory effects on cell differentiation and apoptosis. A recent study has demonstrated that 13- cis -RA and all- trans -RA suppressed neurogenesis in the dentate gyrus of the hippocampus in adult mice. The present experiments were performed to see whether 13- cis -RA and all- trans -RA could alter the dendritic morphology of cultured hippocampal neurons via RA receptors: retinoic acid receptor (RAR) and retinoid X receptor (RXR). High doses of 13- cis -RA and all- trans -RA exerted a negative effect on the cultured hippocampal neurons, while a low dose of 13- cis -RA but not all- trans -RA caused a positive effect. The negative changes induced by 13- cis -RA and all- trans -RA were antagonized by RXR antagonists and RAR antagonists, respectively. The positive changes induced by a low dose of 13- cis -RA were blocked by both RXR antagonists and RAR antagonists. These results suggest that RAs at high concentrations cause a negative effect on the dendritic morphology of cultured hippocampal neurons through RA receptors, while RAs at low concentrations exert a positive influence on cultured hippocampal neurons.  相似文献   

14.
The (lyso)phospholipid mediators sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC), and phosphatidic acid (PA) regulate diverse cellular responses such as proliferation, survival and death, cytoskeletal rearrangements, cell motility, and differentiation among many others. Signaling is complex and many signaling events are mediated through the activation of cell surface seven transmembrane (7TM) G protein coupled receptors. Five high affinity receptors for S1P have been identified so far and named S1P(1, 2,3,4,5) (formerly referred to as endothelial differentiation gene (edg)1, 5, 3, 6, 8). Recently, the orphan receptor GPR63 was identified a low affinity S1P receptor structurally distant from the S1P(1-5) family. The orphan GPR3, 6, 12 cluster, phylogenetically related to the edg and melanocortin receptors appears to be subject to modulation by S1P and SPC although all three receptors are strong constitutive stimulators of the Galphas-adenylyl cyclase (AC) pathway and would not require additional ligand stimulation but rather inverse agonism to control activity. Ovarian cancer G protein coupled receptor 1 (OGR1) and GPR4, two structurally closely related receptors were assigned in functional and binding studies as high affinity molecular targets for SPC. Very recently, however, both OGR1 and GPR4 were described as receptors endowed with the ability to signal cells in response to protons. LPA exerts its biological effects through the activation of G protein coupled LPA(1-3) receptors (formerly referred to as edg2, 4, 7). A fourth high affinity LPA receptor has been identified: P2Y9 (GPR23) structurally related to nucleotide receptors and phylogenetically quite distant from the high affinity LPA(1-3) cluster. This review attempts to give an overview about the existing families of lysophosholipid receptors and the spectrum of lipid agonists they use as high or low affinity ligands to relay extracellular signals into intracellular responses. Recently deorphaned lipid receptors, within and outside the known lipid receptor clusters will receive particular attention.  相似文献   

15.
The thylakoid membranes of the chloroplast harbor the photosynthetic machinery that converts light into chemical energy. Chloroplast membranes are unique in their lipid makeup, which is dominated by the galactolipids mono‐ and digalactosyldiacylglycerol (MGDG and DGDG). The most abundant galactolipid, MGDG, is assembled through both plastid and endoplasmic reticulum (ER) pathways in Arabidopsis, resulting in distinguishable molecular lipid species. Phosphatidic acid (PA) is the first glycerolipid formed by the plastid galactolipid biosynthetic pathway. It is converted to substrate diacylglycerol (DAG) for MGDG Synthase (MGD1) which adds to it a galactose from UDP‐Gal. The enzymatic reactions yielding these galactolipids have been well established. However, auxiliary or regulatory factors are largely unknown. We identified a predicted rhomboid‐like protease 10 (RBL10), located in plastids of Arabidopsis thaliana, that affects galactolipid biosynthesis likely through intramembrane proteolysis. Plants with T‐DNA disruptions in RBL10 have greatly decreased 16:3 (acyl carbons:double bonds) and increased 18:3 acyl chain abundance in MGDG of leaves. Additionally, rbl10‐1 mutants show reduced [14C]–acetate incorporation into MGDG during pulse?chase labeling, indicating a reduced flux through the plastid galactolipid biosynthesis pathway. While plastid MGDG biosynthesis is blocked in rbl10‐1 mutants, they are capable of synthesizing PA, as well as producing normal amounts of MGDG by compensating with ER‐derived lipid precursors. These findings link this predicted protease to the utilization of PA for plastid galactolipid biosynthesis potentially revealing a regulatory mechanism in chloroplasts.  相似文献   

16.
Sufficient amino acid (AA) transport is essential to ensure the normal physiological function and growth of growing animals. The processes of AA sensing and transport in humans and murine animals, but rarely in goats, have been arousing great interest recently. This study was conducted to investigate the messenger RNA expression patterns of lysophosphatidic acid receptor 5 (LPAR5), guanine nucleotide-binding protein α-transducing 3 (GNAT3) and important partial AA transporters in digestive tracts, metabolic organs and muscles of growing goats. The results showed that these genes were widely expressed in goats, and had different expression patterns. LPAR5, GNAT3, solute carrier (SLC38A2), SLC7A7, SLC7A1 and SLC3A1 were rarely expressed in the rumen, but were highly expressed in the abomasum and intestine which are the main sites of AA absorption. GNAT3, SLC38A1, SLC38A2, SLC6A19, SLC7A7 and SLC7A1 showed comparatively high expression in the pancreas and the vital digestive glands, and the relatively high expression of these nine genes were noted in the tibialis posterior, the active muscle in energy metabolism. The correlation analysis showed that there were certain positive correlation among most genes. The current results indicate that the AA sensing and transport occur extensively in the abomasum and small intestine, metabolic organs and muscle tissues of ruminants, and that related genes have tissue specificity.  相似文献   

17.
Positive sense (+) RNA viruses exploit membranes from a variety of cellular organelles to support the amplification of their genomes. This association concurs with the formation of vesicles whose main morphological feature is that of being wrapped by a double membrane. In the case of the SARS‐CoV virus, the outer membrane is not discrete for each vesicle, but seems to be continuous and shared between many individual vesicles, a difference with other +RNA viruses whose nature has remained elusive. I present morphological, biochemical and pharmacological arguments defending the striking analogy of this arrangement and that of entangled, nascent Lipid Droplets whose birth has been aborted by an excess of Phosphatidic Acid. Since Phosphatidic Acid can be targeted with therapeutical purposes, considering this working hypothesis may prove important in tackling SARS‐CoV infection.  相似文献   

18.
19.
Zheng ZQ  Fang XJ  Qiao JT 《生理学报》2004,56(2):163-171
应用DNA电泳分析、HO33342和TUNEL染色法、以及部分地使用透射电镜技术,检测了不同浓度的溶血磷脂酸(1ysophosphatidic acid,LPA)对离体培养的小鼠大脑皮层神经元存活情况的影响.结果显示,低浓度的LPA(0.1~30μmol/L)对去血清培养所致的皮层神经元凋亡有浓度依赖性的保护作用,而较高浓度的LPA(>50 μmol/L)不仅不表现这种保护作用,而且可引致培养在含血清的完全培养基中的皮层神经元出现凋亡.以上结果表明,适当浓度的LPA对凋亡的皮层神经元起着保护因子或抗凋亡因子的作用,而较高浓度的LPA则起着促凋亡因子的作用.  相似文献   

20.
Neurotrophic factors (NTFs) can protect against or sensitize neurons to excitotoxicity. We studied the role played by various NTFs in the excitotoxic death of purified embryonic rat motor neurons. Motor neurons cultured in brain-derived neurotrophic factor, but not neurotrophin 3, glial-derived neurotrophic factor, or cardiotrophin 1, were sensitive to excitotoxic insult. BDNF also induces excitotoxic sensitivity (ES) in motor neurons when BDNF is combined with these other NTFs. The effect of BDNF depends on de novo protein and mRNA synthesis. Reagents that either activate or inhibit the 75-kDa NTF receptor p75NTR do not affect BDNF-induced ES. The low EC50 for BDNF-induced survival and ES suggests that TrkB mediates both of these biological activities. BDNF does not alter glutamate-evoked rises of intracellular Ca2+, suggesting BDNF acts downstream. Both wortmannin and LY294002, which specifically block the phosphatidylinositol 3-kinase (PI3K) intracellular signaling pathway in motor neurons, inhibit BDNF-induced ES. We confirm this finding using a herpes simplex virus (HSV) that expresses the dominant negative p85 subunit of PI3K. Infecting motor neurons with this HSV, but not a control HSV, blocks activation of the PI3K pathway and BDNF-induced ES. Through the activation of TrkB and the PI3K signaling pathway, BDNF renders developing motor neurons susceptible to glutamate receptor-mediated cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号