首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of adherence to substrate can, by itself, induce apoptosis (anoikis) in epithelial cells, but does not do so in fibroblasts. To test the idea that adherence transmits signals that inhibit apoptosis even in fibroblasts, we took advantage of the greatly increased adherence to the substratum observed in NIH3T3 cell lines that overexpress thymosin beta four. We treated overexpressing (OE) and vector control lines with either ultraviolet light (UV) or tumor necrosis factor alpha (TNFα). When the cells were on a substratum, the more adherent OE cells were 2-fold more resistant to apoptosis induced by either treatment than vector controls. In contrast, when the cells were treated with either agent while in suspension, the difference in resistance between OE cells and vector controls was lost. Thus the increased resistance to apoptosis was dependent on adherence. There was no difference in the content of bcl-2 in the OE cells vs the controls. A connection between ppl25 FAK and resistance to apoptosis has been previously shown in primary cultures of fibroblasts. The Tβ4 overexpressing cells have ~ 1.4× more pp125 FAK than the controls, and the kinase is ~2-fold more phosphorylated in adherent OE cells than in the vector controls. The phosphorylation of pp125 FAK decreased strikingly when the cells were put into suspension. In addition, twice as much paxillin associated with pp125 FAK in OE adherent cells as in vector controls, but this difference was also lost in suspended cells. Our results support the concept of an adherence dependent ppl25 FAK-paxillin signalling pathway in fibroblasts that inhibits damage-induced apoptosis.  相似文献   

2.
Pro-apoptotic signaling pathway activated by echistatin in GD25 cells   总被引:1,自引:0,他引:1  
Disintegrins, low molecular weight RGD-containing polypeptides isolated from snake venoms, have seen use as integrin antagonists in the field of tumor biology and angiogenesis. In this study, we investigated the molecular mechanism by which the disintegrin echistatin affects cell adhesion and signaling resulting in an apoptotic response in the GD25 cell system. Wild-type GD25 cells, which lack expression of the beta(1) family of integrin, and stable transfectants expressing the A isoform of beta(1) integrin subunit were used. Nanomolar concentrations of echistatin detached fibronectin- and vitronectin-adherent GD25 cells from immobilized substratum. However, prior to inducing detachment of adherent cells, echistatin caused apoptosis as measured by caspase-3 activation. Either cell detachment or apoptotic response induced by echistatin were more pronounced on fibronectin-adherent GD25 cells than on vitronectin-adherent ones. GD25 cell exposure to echistatin caused a reduction of tyrosine phosphorylation levels of pp125(FAK), whereas it didn't affect either Shc tyrosine phosphorylation levels or Shc-Grb2 functional association. The down-regulation of pp125(FAK) preceded apoptosis and cell detachment induced by echistatin. Our results indicate that pp125(FAK) and not Shc pathway is involved in echistatin-induced apoptotic response in the GD25 cell system.  相似文献   

3.
Disruption of cell-matrix interactions can lead to anoikis - apoptosis due to loss of matrix contacts. Altered fibronectin (FN) induces anoikis of primary human fibroblasts by a novel signaling pathway characterized by reduced phosphorylation of focal adhesion kinase (FAK). However, the receptors involved are unknown. FAK phosphorylation is regulated by nerve/glial antigen 2 (NG2) receptor signaling through PKCalpha a point at which signals from integrins and proteoglycans may converge. We found that an altered FN matrix induced anoikis in fibroblasts by upregulating NG2 and downregulating integrin alpha4. Suppressing NG2 expression or overexpressing alpha4 rescued cells from anoikis. NG2 overexpression alone induced apoptosis and, by reducing FAK phosphorylation, increased anoikis induced by an altered matrix. NG2 overexpression or an altered matrix also suppressed PKCalpha expression, but overexpressing integrin alpha4 enhanced FAK phosphorylation independently of PKCalpha. Cotransfection with NG2 cDNA and integrin alpha4 siRNA did not lower PKCalpha and pFAK levels more than transfection with either alone. PKCalpha was upstream of FAK phosphorylation, as silencing PKCalpha decreased FAK phosphorylation. PKCalpha overexpression reversed this behavior and rescued cells from anoikis. Thus, NG2 is a novel proapoptotic receptor, and NG2 and integrin alpha4 oppositely regulate anoikis in fibroblasts. NG2 and integrin alpha4 regulate FAK phosphorylation by PKCalpha-dependent and -independent pathways, respectively.  相似文献   

4.
Inhibition of pp125FAK in cultured fibroblasts results in apoptosis   总被引:17,自引:0,他引:17       下载免费PDF全文
《The Journal of cell biology》1996,135(5):1383-1390
The tyrosine kinase called pp125FAK is believed to play an important role in integrin-mediated signal transduction. pp125FAK is associated both functionally and spatially with integrins, which are the cell surface receptors for extracellular matrix components. Although the precise function of pp125FAK is not known, two possibilities have been proposed: pp125FAK may regulate the assembly of focal adhesions in spreading or migrating cells, or pp125FAK may participate in a signal transduction cascade to inform the nucleus that the cell is anchored. To test these models in living cells, a peptide representing the focal adhesion kinase (FAK)-binding site of the beta 1 tail was coupled to carrier protein and injected into cultured cells to competitively inhibit the binding of pp125FAK to endogenous integrin, thus inhibiting activation of pp125FAK on a cell-by-cell basis. In addition, an antibody directed against an epitope adjacent to the focal adhesion targeting sequence on pp125FAK was microinjected, as an alternative means of inhibiting pp125FAK activation. It was observed that when rounded cells were injected with either the integrin peptide or the anti-FAK antibody, the cells rapidly began to apoptose, within 4 h after injection. These results indicate that pp125FAK may play a critical role in suppressing apoptosis in fibroblasts.  相似文献   

5.
Intact fibronectin (FN) protects cells from apoptosis. When FN is fragmented, specific domains induce proteinase expression in fibroblasts. However, it is not known whether specific domains of FN can also regulate apoptosis. We exposed fibroblasts to four recombinant FN fragments and then assayed for apoptosis using criteria of cellular shape change, condensed nuclear morphology, and DNA fragmentation. The fragments extended from the RGD-containing repeat III10 to III15; they included (V(+)) or excluded (V(-)) the alternatively spliced V region and contained either a mutated (H(-)) or an unmutated (H(+)) heparin binding domain. Only the V(+)H(-) fragment triggered decreases in pp125(FAK) levels and apoptosis, which was rescued by intact FN and inhibitors of caspase-1 and caspase-3. This apoptotic mechanism was mediated by a chondroitin sulfate proteoglycan, since treating cells with chondroitin sulfate or chondroitinase reversed the apoptotic cell shape changes. The alpha4 integrin receptor may also be involved, since using a blocking antibody to alpha4 alone induced apoptotic cell shape changes, whereas co-treatment with this antibody plus V(+)H(+) reversed these effects. These results demonstrate that the V and heparin binding domains of FN modulate pp125(FAK) levels and regulate apoptosis through a chondroitin sulfate proteoglycan- and possibly alpha4 integrin-mediated pathway, which triggers a caspase cascade.  相似文献   

6.
Focal adhesion kinase (FAK or pp125FAK) is a cytosolic protein tyrosine kinase which plays an important role in integrin-mediated signal transduction. Adhesion of cells to the substratum correlates with an increase in tyrosine phosphorylation of FAK as well as an associated protein, paxillin. In this report we show that the tyrosine phosphorylation of FAK and paxillin are decreased during dibutyryl cyclic AMP-induced (dB-cAMP) process formation in astrocytes. When astrocytes in suspension are treated with dB-cAMP, no alteration in morphology or tyrosine phosphorylation is observed, suggesting that both phenomena are linked and adhesion dependent. Furthermore, genistein, a tyrosine kinase inhibitor, can induce process formation in such cells, underscoring the significance of protein tyrosine kinases in maintaining the morphology of adherent cells. Finally, endothelin-1, a vasopeptide which is known to inhibit process formation in astrocytes, inhibited the tyrosine dephosphorylation of proteins associated with dB-cAMP treatment. These results suggest that the formation of asymmetric processes in astrocytes results from a coordinated set of alterations in the actin cytoskeleton as well as the adhesion of the cell to the substratum. Modification of the properties of such molecules is required for process formation and the dynamic modulation of astrocytic morphology in vitro and in vivo.  相似文献   

7.
Focal adhesion kinase (FAK or pp125FAK) is a cytosolic protein tyrosine kinase which plays an important role in integrin‐mediated signal transduction. Adhesion of cells to the substratum correlates with an increase in tyrosine phosphorylation of FAK as well as an associated protein, paxillin. In this report we show that the tyrosine phosphorylation of FAK and paxillin are decreased during dibutyryl cyclic AMP–induced (dB‐cAMP) process formation in astrocytes. When astrocytes in suspension are treated with dB‐cAMP, no alteration in morphology or tyrosine phosphorylation is observed, suggesting that both phenomena are linked and adhesion dependent. Furthermore, genistein, a tyrosine kinase inhibitor, can induce process formation in such cells, underscoring the significance of protein tyrosine kinases in maintaining the morphology of adherent cells. Finally, endothelin‐1, a vasopeptide which is known to inhibit process formation in astrocytes, inhibited the tyrosine dephosphorylation of proteins associated with dB‐cAMP treatment. These results suggest that the formation of asymmetric processes in astrocytes results from a coordinated set of alterations in the actin cytoskeleton as well as the adhesion of the cell to the substratum. Modification of the properties of such molecules is required for process formation and the dynamic modulation of astrocytic morphology in vitro and in vivo. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 407–422, 1999  相似文献   

8.
To elucidate the role of focal adhesion kinase (pp125FAK) in transformation, its phosphorylation in transformed fibroblasts was compared with that of detransformed fibroblasts induced by a histone deacetylase inhibitor, trichostatin A (TSA). Inhibition of histone deacetylase activity in two different ras-transformed fibroblast lines by TSA induced a morphological change into a flattened and more spread morphology, implying detransformation. These morphological changes included increased spreading ability of transformed NIH 3T3 cells on fibronectin. Of the six tyrosine phosphorylation sites in pp125FAK, phosphorylation at position 861 (Tyr-861) was clearly decreased during detransformation by TSA. It resulted from decreased activity of Src family tyrosine kinase and/or decreased amount of Src kinase interacting with pp125FAK. Furthermore, phosphorylation of Tyr-861 was reduced substantially by the Src family kinase inhibitor, PP1, while overexpression of Src kinase increased its phosphorylation, implying that Src kinase regulates phosphorylation of pp125FAK at Tyr-861. All of these findings suggest that increased phosphorylation of pp125FAK at Tyr-861 correlates with Ras-induced transformation of fibroblasts, and TSA is able to detransform them through regulation of pp125FAK phosphorylation at Tyr-861 by an Src family kinase.  相似文献   

9.
Multiple stimuli promote the tyrosine phosphorylation and activation of focal adhesion kinase (FAK), which ultimately facilitates migration. Little is known about the effect of adhesion-dependent signals and cytoskeleton organization on the regulation of FAK phosphorylation at serine sites, or about the role of FAK serine phosphorylation in cell migration. Here, we show that FAK phosphorylation at Ser-843 is strikingly increased when adherent cells are removed from the substratum and held in suspension or by treatment of adherent cells with cytochalasin D, conditions that disrupt the F-actin cytoskeleton and promote focal adhesion disassembly. Notably, the increase in Ser-843 phosphorylation was accompanied by a concomitant sharp decrease in Tyr-397 phosphorylation. To further examine the cause-effect relationship between these two phosphorylation sites we generated Ser-843 phosphorylation-deficient and phosphorylation-mimicking FAK mutants. We found that mutation of Ser-843 to aspartic acid (FAK[S843D]) markedly decreased FAK Tyr-397 phosphorylation in integrin-stimulated cells. While the migratory defect of FAK-deficient fibroblasts was rescued by stable re-expression of WT FAK or FAK[S843A], stable re-expression of FAK[S843D] failed to restore the ability of the cells to migrate into the denuded area of a wound. Our results indicate that increased FAK phosphorylation at Ser-843 represses FAK phosphorylation at Tyr-397, thus suggesting a mechanism of cross-talk between these phosphorylation sites that could regulate FAK-mediated cell shape and migration.  相似文献   

10.
Cell-matrix and cell-cell interactions are important physiological determinants of cell growth, survival and transformation. Cell adhesion to the extra cellular matrix (ECM) via integrins also crucially influences the organization of the cytoskeleton. It triggers a cascade of intracellular biochemical events, which regulate cell viability and growth. We have studied the relationship between cell attachment to the substratum and cytoskeletal organization and cell survival and transformation. Our results demonstrate that in the absence of attachment to the substratum, adhesion-dependent fibroblasts exhibit rapid loss of viability. However, a small percentage of cells survive even after remaining non-adherent for 16h. The adherent and non-adherent cells differ from one another both morphologically and physiologically. The latter show a loss of alpha5beta1 integrin expression on their surface and bind non-specifically to the substratum and ECM, thereby activating certain pathways more efficiently than adherent cells. We have also shown that non-adherent cells grow faster and have worse cytoskeletal organization after attachment to the substratum, and do not form focal adhesions or actin stress fibres. Hence, our data suggests that rat fibroblasts in prolonged suspension exhibit some properties that are comparable to cells undergoing transformation, by adapting integrin-dependent or independent signalling pathways for their survival.  相似文献   

11.
Focal adhesion kinase (pp125FAK or FAK) and paxillin colocalize with integrins in structures called focal adhesions. pp125FAK plays an important role in the transmission of integrin-induced cytoplasmic signals. Paxillin has also been implicated in cell signaling by virtue of its association with the protein tyrosine kinases pp60src and Csk (C-terminal Src kinase) as well as with the adapter/oncoprotein p47gag-crk. In this report we show that endogenous pp125FAK and paxillin form a stable complex both in vivo and in vitro and that this interaction is direct, requiring only pp125FAK and paxillin. The paxillin binding site on pp125FAK has been localized to the carboxy-terminal 148 residues of pp125FAK, but appears to be distinct from the previously identified focal adhesion-targeting sequence also present in the carboxy-terminal domain of pp125FAK. The interaction of paxillin and pp125FAK is independent of the adhesion of cells to the extracellular matrix, as the association can be detected in suspension cells as well as those attached to fibronectin.  相似文献   

12.
We have investigated mechanisms involved in integrin-mediated signal transduction in platelets by examining integrin-dependent phosphorylation and activation of a newly identified protein tyrosine kinase, pp125FAK (FAK, focal adhesion kinase). This kinase was previously shown to be localized in focal adhesions in fibroblasts, and to be phosphorylated on tyrosine in normal and Src-transformed fibroblasts. We show that thrombin and collagen activation of platelets causes an induction of tyrosine phosphorylation of pp125FAK and that pp125FAK molecules isolated from activated platelets display enhanced levels of phosphorylation in immune-complex kinase assays. pp125FAK was not phosphorylated on tyrosine after thrombin or collagen treatment of Glanzmann's thrombasthenic platelets deficient in the fibrinogen receptor GPIIb-IIIa, or of platelets pretreated with an inhibitory monoclonal antibody to GP IIb-IIIa. Fibrinogen binding to GP IIb-IIIa was not sufficient to induce pp125FAK phosphorylation because pp125FAK was not phosphorylated on tyrosine in thrombin-treated platelets that were not allowed to aggregate. These results indicate that tyrosine phosphorylation of pp125FAK is dependent on platelet aggregation mediated by fibrinogen binding to the integrin receptor GP IIb-IIIa. The induction of tyrosine phosphorylation of pp125FAK was inhibited in thrombin- and collagen-treated platelets preincubated with cytochalasin D, which prevents actin polymerization following activation. Under all of these conditions, there was a strong correlation between the induction of tyrosine phosphorylation of pp125FAK in vivo and stimulation of the phosphorylation of pp125FAK in vitro in immune-complex kinase assays. This study provides the first genetic evidence that tyrosine phosphorylation of pp125FAK is dependent on integrin-mediated events, and demonstrates that there is a strong correlation between tyrosine phosphorylation of pp125FAK in platelets, and the activation of pp125FAK-associated phosphorylating activity in vitro.  相似文献   

13.
14.
The expression of alpha 5 beta 1 integrin on the surface of fibroblasts requires adhesion to substratum. We have examined the basis for this adhesion-dependent surface expression by comparing the life cycle of integrins in parallel cultures of adherent and nonadherent cells. Results of biosynthetic labeling experiments in NRK fibroblasts showed that the synthesis and biosynthetic processing of the beta 1 integrin subunit proceed in the absence of cell attachment; however, when examining the behavior of preexisting cell surface integrins, we observed that the alpha beta 1 integrins are internalized and degraded when adhesion to substratum is blocked. A kinetic analysis of integrin internalization in cycloheximide-treated NRK cells showed that each of the fibroblast integrins we examined (in both the beta 1 and beta 3 families) are lost from the cell surface after detachment from substratum. Thus, the default integrin life cycle in fibroblasts involves continuous synthesis, processing, transport to the cell surface, and internalization/degradation. Interestingly, studies with NIH-3T3 cells expressing alpha 1 beta 1 integrin showed that the loss of cell-surface alpha 5 beta 1 integrin is blocked by adhesion of cells to dishes coated with type IV collagen (a ligand for alpha 1 beta 1 integrin) as well as fibronectin. Similarly, adhesion of these cells to dishes coated with type IV collagen stabilizes the surface expression of alpha 5 beta 1 as well as alpha 1 beta 1 integrin. We propose that the adhesion of fibroblasts to extracellular matrix protein alters the integrin life cycle and permits retention of these proteins at the cell surface where they can play important roles in transmitting adhesion-dependent signals.  相似文献   

15.
Signaling molecules downstream from the insulin receptor, such as the insulin receptor substrate protein 1 (IRS-1), are also activated by other receptor tyrosine kinases. Here we demonstrate that the non-receptor tyrosine kinases, focal adhesion kinase pp125(FAK) and Src-class kinase pp59(Lyn), after insulin-independent activation by phosphoinositolglycans (PIG), can cross talk to metabolic insulin signaling in rat and 3T3-L1 adipocytes. Introduction by electroporation of neutralizing antibodies against pp59(Lyn) and pp125(FAK) into isolated rat adipocytes blocked IRS-1 tyrosine phosphorylation in response to PIG but not insulin. Introduction of peptides encompassing either the major autophosphorylation site of pp125(FAK), tyrosine 397, or its regulatory loop with the twin tyrosines 576 and 577 inhibited PIG-induced IRS-1 tyrosine phosphorylation and glucose transport. PIG-induced pp59(Lyn) kinase activation and pp125(FAK) tyrosine phosphorylation were impaired by the former and latter peptide, respectively. Up-regulation of pp125(FAK) by integrin clustering diminished PIG-induced IRS-1 tyrosine phosphorylation and glucose transport in nonadherent but not adherent adipocytes. In conclusion, PIG induced IRS-1 tyrosine phosphorylation by causing (integrin antagonized) recruitment of IRS-1 and pp59(Lyn) to the common signaling platform molecule pp125(FAK), where cross talk of PIG-like structures and extracellular matrix proteins to metabolic insulin signaling may converge, possibly for the integration of the demands of glucose metabolism and cell architecture.  相似文献   

16.
Active matrix metalloproteinases and degraded collagen are observed in disease states, such as atherosclerosis. To examine whether degraded collagen fragments have distinct effects on vascular smooth muscle cells (SMC), collagenase-digested type I collagen was added to cultured human arterial SMC. After addition of collagen fragments, adherent SMC lose their focal adhesion structures and round up. Analysis of components of the focal adhesion complex demonstrates rapid cleavage of the focal adhesion kinase (pp125(FAK)), paxillin, and talin. Cleavage is suppressed by inhibitors of the proteolytic enzyme, calpain I. In vitro translated pp125(FAK) is a substrate for both calpain I- and II-mediated processing. Mapping of the proteolytic cleavage fragments of pp125(FAK) predicts a dissociation of the focal adhesion targeting (FAT) sequence and second proline-rich domain from the tyrosine kinase domain and integrin-binding sequence. Coimmunoprecipitation studies confirm that the ability of pp125(FAK) to associate with paxillin, vinculin, and p130cas is significantly reduced in SMC treated with degraded collagen fragments. Further, there is a significant reduction in the association of intact pp125(FAK) with the cytoskeletal fraction, while pp125(FAK) cleavage fragments appear in the cytoplasm in SMC treated with degraded collagen fragments. Integrin-blocking studies indicate that integrin-mediated signals are involved in degraded collagen induction of pp125(FAK) cleavage. Thus, collagen fragments induce distinct integrin signals that lead to initiation of calpain-mediated cleavage of pp125(FAK), paxillin, and talin and dissolution of the focal adhesion complex.  相似文献   

17.
Tyrosine phosphorylation of cytoskeletal proteins plays an important role in the regulation of focal adhesions and stress fiber organization. In the present study we examined the role of tyrosine phosphatases in this process using p125FAK and paxillin as substrates. We show that tyrosine phosphatase activity in Swiss 3T3 cells was markedly increased when actin stress fibers were disassembled by cell detachment from the substratum, by serum starvation, or by cytochalasin D treatment. This activity was blocked by phenylarsine oxide, an inhibitor of a specific class of tyrosine phosphatases characterized by two vicinal thiol groups in the active site. Phenylarsine oxide treatment of serum-starved cells induced increased tyrosine phosphorylation of p125FAK and paxillin in a dose-dependent manner and induced assembly of focal adhesions and actin stress fibers, showing that inhibition of one or more phenylarsine oxide-sensitive tyrosine phosphatases is a sufficient stimulus for triggering focal adhesion and actin stress fiber formation in adherent cells.  相似文献   

18.
19.
As cells adhere to extracellular matrix proteins, several focal adhesion proteins become tyrosine phosphorylated. One of the most prominent of these has been identified as the tyrosine kinase p125FAK (focal adhesion kinase, FAK). An interaction between FAK and members of the Src family tyrosine kinases p59fyn, pp60v-src, and activated pp60c-src (527F) has been demonstrated, raising the possibility that these kinases may regulate FAK activity. To explore the role of Src family kinases in focal adhesions and in the regulation of FAK activity, we isolated fibroblasts from transgenic mice that lack either pp60c-src p59fyn, or pp62c-yes. These primary fibroblasts, and those of a control mouse, were passaged numerous times and resulted in spontaneously immortalized cell lines without the addition of transforming agents. After confirming the absence of the appropriate nonreceptor tyrosine kinases in the fyc¯, srn¯ and yes¯ fibroblasts, the ability of these fibroblasts to form focal adhesions and stress fibers was assessed by immunofluorescence microscopy and found to be comparable to that of normal fibroblasts. We investigated phosphotyrosine levels in response to adhesion to fibronectin and identified the pp60src substrate p130 as the one major protein with reduced levels of tyrosine phosphorylation in the cells lacking p59fyn and pp62c-yes, and particularly in those lacking pp60c-scr. We examined FAK phosphorylation and kinase activity and found that there were no significant differences between these cells.  相似文献   

20.
Resistance to anoikis, or apoptosis triggered by detachment from the extracellular matrix (ECM), lengthens the survival of malignant cells, facilitating reattachment and colonization of secondary sites. To examine the molecular mechanisms underlying resistance to anoikis in human oral squamous cell carcinoma (SCC) cells, we cultured human squamous carcinoma (HSC-3) cells in suspension on plates coated with poly-2-hydroxyethyl methacrylate, which blocks access to the ECM. Cells in suspension that formed multicellular aggregates had significantly lower levels of apoptosis than single cells. Aggregates, but not single cells, had high levels of fibronectin. Preincubation with a cyclic arginine-glycine-aspartic acid peptide or fibronectin-blocking antibody significantly increased anoikis. Single cells had markedly lower expression of the integrin alpha(v) receptor than aggregates. Blocking alpha(v) function with a blocking antibody or by transfection with an antisense oligonucleotide increased apoptosis and inhibited aggregation. In single cells but not aggregates, phosphorylation of the integrin-associated focal adhesion kinase (FAK) at tyrosine 397 was reduced, and p53 levels were increased. Apoptosis was increased by blocking FAK with an antisense oligonucleotide and reduced by blocking p53. These findings show that SCC cells escape suspension-induced anoikis by forming multicellular aggregates that avail themselves of fibronectin survival signals mediated by integrin alpha(v). Single cells in suspension that do not form aggregates undergo anoikis because of decreased FAK phosphorylation and increased p53 levels. Thus, SCC cells appear to use neighboring cells and the ECM molecule FN to promote the metastatic phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号