首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 981 毫秒
1.
PC12, an NGF responsive cell line, exhibits two classes of NGF receptors which we designate “Fast” and “Slow.” Fast receptors, accounting for 75% of specific NGF binding, are distinguished by their rapid rates for association and dissociation of 125I-NGF. At 37°C, binding of 125I-NGF to Fast receptors is 5-fold more rapid than to Slow receptors and dissociation of 125I-NGF from Fast receptors is 40-fold more rapid than from Slow receptors. No evidence was obtained for a ligand-induced conversion of receptors from Fast to Slow characteristics. Scatchard analysis of binding experiments indicates that PC12 cells possess 60,000 specific receptors for NGF of which 15,000 are of the Slow class. Despite having very different kinetic constants, Slow and Fast receptors have similar equilibrium binding constants (about 2 × 10?10 M) due to cancelling effects of differing association and dissociation rates. Brief digestion of PC12 cells with trypsin before addition of NGF inactivates essentially all Fast receptors without significantly affecting Slow receptors. Therefore Fast and Slow classes of receptors must exist prior to addition of NGF, and the observed receptor heterogeneity is not due to ligand-induced changes. 125I-NGF bound to Slow receptors is preferentially associated with preparations of Triton X-100 insoluble cytoskeletons, while 125I-NGF bound to Fast receptors is solubilized by this procedure. Cytoskeletally associated NGF is almost exclusively associated with the extranuclear cytoskeletal matrix rather than with the nucleus itself. Preparation of nuclei by various methods suggests that the presence of contaminating cytoskeletal elements should be considered in evaluating the existence of translocation and binding of NGF to the nucleus. Inhibition of endocytotic internalization of NGF either by lowering of temperature to O°C or by preincubation of cells with sodium azide in medium lacking glucose does not reduce the slowly released component of bound NGF, nor alter its cytoskeletal association. The possible functional roles of Slow and cytoskeletal receptors are discussed.  相似文献   

2.
Rat PC12 pheochromocytoma and human A875 melanoma cells express nerve growth factor (NGF) receptors on their surfaces. Covalent crosslinking of bound 125I-NGF to PC12 or A875 intact cells or plasma membrane-enriched fractions resulted in labelling of a peptide doublet at Mr = 110,000 and a single labelled peptide at Mr = 200,000 for each of the cell and membrane preparations. However, a difference between equilibrium binding properties of NGF-receptor on PC12 and A875 cells was observed. PC12 cells exhibited biphasic binding properties with two apparent binding sites: KD = 5.2 nM sites and KD = 0.3 nM sites. The high-affinity PC12 binding sites were trypsin resistant, and 125I-NGF dissociated slowly from them. A875 cells exhibited sites with homogeneous properties (KD = 1.0 nM), all binding sites were trypsin sensitive, and 125I-NGF dissociated rapidly in the presence of unlabelled NGF. Membrane-enriched fractions from either cell type contained binding sites with a uniform low affinity (KD = 3 nM) that were trypsin sensitive, and 125I-NGF rapidly dissociated from them. Sixty to 80 percent of binding sites in membranes could be converted to the high-affinity, trypsin-resistant state by addition of wheat germ agglutinin (WGA). The loss of high-affinity, trypsin-resistant sites from PC12 cells during preparation of plasma membrane fractions does not appear to be the result of selective isolation of low-affinity sites or proteolytic degradation since there is a loss of 125I-NGF binding immediately after cell lysis which is not blocked by protease inhibitors. Also, high-affinity, trypsin-resistant binding sites are not found associated with other cell fractions. The differences between receptor properties on PC12 cells and on A875 cells apparently are the result of differences in the respective intracellular environments. Thus, significant structural homology exists between receptors on A875 and PC12 cells. Cell components other than the binding unit of the NGF receptor may be responsible for the different properties of receptor.  相似文献   

3.
Molecular characteristics of nerve growth factor receptors on PC12 cells   总被引:23,自引:0,他引:23  
Cross-linking of 125I-nerve growth factor (NGF) to PC12 cells with the photoreactive heterobifunctional agent N-hydroxysuccinimidyl-4-azidobenzoate results in the labeling of two major bands with Mr 158,000 and 100,000 and a minor band with Mr 225,000 as determined by polyacrylamide gel electrophoresis under denaturing and reducing conditions. Binding of 125I-NGF to and cross-linking into all these species is abolished in the presence of excess unlabeled NGF but not in the presence of unlabeled epidermal growth factor, insulin, or bovine pancreatic trypsin inhibitor. When PC12 cells with bound 125I-NGF are incubated in excess unlabeled NGF at 0 degree C prior to cross-linking, only the Mr 158,000 species remains. In addition, binding of 125I-NGF to the Mr 158,000 complex is trypsin-resistant, whereas binding to the Mr 100,000 complex is not. These experiments identify the Mr 158,000 species as the slow NGF-receptor complex (chase stable at 0 degree C) and the smaller Mr 100,000 species as the fast NGF-receptor complex (trypsin sensitive). Furthermore, 125I-NGF bound to the former but not to the latter species is displaced by very-low concentrations of NGF, showing that at least a significant fraction of the high-molecular-weight slow receptor is also a high-affinity receptor. This identification is supported by the finding that chick sensory neurons which possess both high- and low-affinity receptors exhibit two major labeled bands with Mr 145,000 and 105,000 as a result of cross-linking with 125I-NGF, whereas a cell population enriched in non-neuronal cells, which possess only low-affinity receptors, exhibits only the Mr 105,000 component. A shift in molecular weight of both species after pretreatment with neuraminidase indicates that both complexes contain sialoglycoproteins and rules out the possibility that differences in sialic acid content are responsible for the difference in molecular weight of the two complexes. The relative amount of the labeling of these two complexes is not affected by the presence of protease inhibitors nor by a variation of 5000-fold in cross-linker concentration. These results place some limits on possible models for the NGF receptors and their interconversion.  相似文献   

4.
Relationship among types of nerve growth factor receptors on PC12 cells   总被引:3,自引:0,他引:3  
We analyzed the kinetics and thermodynamics of 125I-nerve growth factor (125I-NGF) binding to NGF-receptor on PC12 cells. We used conditions of pseudo-first order kinetics and techniques to quantitate internalized complexes, "slow" or high affinity binding complexes, and cell surface "fast" or low affinity complexes. Two possible models were examined: binding to two independent receptors at the cell surface (i.e. high and low affinity forms of NGF-receptor) and a model for consecutive formation of fast, low affinity binding followed by slow, high affinity binding or internalization. Our data are consistent with the consecutive model only. The rates of association and dissociation of NGF with slow, high affinity sites and internalized, acid wash-resistant sites are indistinguishable from each other. We also analyzed, in detail, the two assays primarily used to distinguish slow binding complexes from internalized complexes. Scatchard analysis of total binding and dissociation of pre-equilibrated 125I-NGF in the presence of unlabeled NGF at high concentration (cold wash). Neither of these assays shows any evidence that the slow, high affinity binding step is different from internalization of the 125I-NGF-receptor complex. Based on this analysis, there are only two detectable forms of NGF-receptor on PC12 cells: complexes on the surface of the cells with a binding affinity of 0.5 nM at 37 degrees C and complexes internalized by the cells. Furthermore, the data are consistent with a model in which NGF-receptor is internalized constitutively and independently of occupancy by NGF. We also examined the fate of internalized 125I-NGF. In the first 60 min after contact with PC12 cells, no degradation of 125I-NGF was observed. Moreover, a significant amount of 125I-NGF recirculates to the cell surface and is released as intact, Mr = 13,000 NGF. The cells were also stimulated by NGF in a primary neurite outgrowth assay with an ED50 of 2-16 pM under conditions of low initial cell numbers in a large extracellular volume of NGF-containing medium. Thus, low level occupancy of the cell surface receptors, Kd = 0.5 nM, for several days is sufficient to stimulate neurite outgrowth. This indicates the presence of spare NGF-receptors on the surface PC12 cells.  相似文献   

5.
Both high and low affinity receptors for nerve growth factor (NGF) have been described, but only the former appear to mediate NGF actions and uptake. To specifically characterize the molecular identity of the high affinity site and to compare it with the low affinity site, the water-soluble carbodiimide EDC was used to cross-link 125I-NGF to NGF receptors on: rat PC12 cells, PC12nnr5 cells (PC12 mutants that have only low affinity NGF binding), SH-SY5Y human neuroblastoma cells (which have only high affinity binding sites), and cultured rat sympathetic ganglion cells. A variety of criteria were used to distinguish the two classes of affinity-labeled receptors: competition with unlabeled NGF, dissociation rate, and selective solubilization by 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that cross-linking generated only a single Mr approximately 103,000 125I-NGF affinity-labeled species which represents both the low and high affinity forms of the receptor. The 125I-NGF X receptor complexes formed with both affinity classes of the receptor were quantitatively immunoprecipitated by the monoclonal anti-NGF-receptor antibody 192-IgG and both showed identical shifts in mobility when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. These findings indicate that both high and low affinity NGF receptors possess apparently identical NGF-binding moieties. The differences between the kinetic and functional properties of the two receptor types may therefore result from their interactions with other membrane components or with cytoplasmic proteins.  相似文献   

6.
Binding and internalization of nerve growth factor (NGF) by responsive cells is a complex process. We have incubated rat pheochromocytoma cells (PC12) with 125I-NGF at 37 degrees C and measured the association of ligand after removal of subsets of bound ligand by different methods. Chase with unlabeled NGF at either 4 or 37 degrees C, acid stripping, nonionic detergent stability, and combinations of these protocols were utilized. These variations of the binding assay were able to distinguish ligand bound to fast versus slow cell surface receptors, NGF bound to slow receptors at the cell surface versus cell interior, and soluble ligand versus cytoskeletally attached NGF. Quantitative and temporal relations among five cellular pools were defined. Experiments with the inhibitors chloroquine, cytochalasin B, and colchicine defined pools of NGF in terms of the route through the cell from the plasma membrane to the lysosome. Chloroquine caused accumulation of NGF only in the pool that was not associated with the cytoskeleton, implicating the involvement of this pool in supplying ligand to the lysosome. Results with cytochalasin B and colchicine suggest that both microfilaments and microtubules are involved in pathways leading to NGF degradation. A semiquantitative model for the movement of NGF through the cell is presented based on these observations.  相似文献   

7.
Summary Retinoic acid (RA), a naturally occurring metabolite of vitamin A, increased the number of receptors for nerve growth factor (NGF) in cultured human neuroblastoma cells (LA-N-1), as indicated by an immunofluorescence assay of cell surface receptors and by specific binding of 125I-NGF to solubilized receptors. Analysis of 125I-NGF binding showed that RA increased the number of both high affinity and low affinity receptors for NGF without affecting the equilibrium dissociation constants. Neurite outgrowth similar to that produced by NGF occurred following RA-treatment in LA-N-1 cells, in the SY5Y subclone of SK-N-SH human neuroblastoma cells and in explanted chick dorsal root ganglia (DRG). Whether morphological changes following RA treatment are directly related to the increase in NGF receptors is unknown. Data presented here are consistent with literature reports that RA modifies cell surface glycoproteins, including those that act as cell surface receptors for epidermal growth factor and insulin.Abbreviations DRG dorsal root ganglia - NGF nerve growth factor - RA retinoic acid  相似文献   

8.
Cultured neural crest cells undergoing differentiation have been shown to contain a subpopulation of cells with specific receptors for nerve growth factor (NGF). These cells are the potential targets of NGF during differentiation and development. This study was done to pharmacologically characterize the binding of NGF to long-term (1- to 3-week) cultures of quail neural crest cells. The data indicate that 125I-NGF binding was specific and saturable, with less than 20% nonspecific binding. Scatchard analysis revealed the presence of one type (class) of receptors with a binding constant (Kd) similar to that of the low-affinity binding site described for embryonic dorsal root and sympathetic ganglia (approximately 3.2 nM). This was corroborated by displacement experiments (Kd of 1.3 nM), in which 125I-NGF binding was measured in the presence of increasing concentrations of nonradioactive NGF. In addition, affinity labeling revealed that the 125I-NGF-receptor complex had a molecular weight of about 93K, characteristic of the low-affinity NGF receptor of PC12 cells. The NGF receptor of cultured neural crest cells was trypsin-sensitive, as is typical of the low-affinity NGF binding sites. These findings indicate that differentiating neural crest cells lack high-affinity 125I-NGF binding sites. In contrast, embryonic dorsal root and sympathetic ganglia cells, known NGF targets, have both high- and low-affinity receptors. Measurements of the differential release of surface-bound 125I-NGF indicated that a relatively small amount (about 14%) of NGF is internalized over a 1-hr period. Cultured neural crest cells which bear NGF receptors were also shown by light microscopic radioautographic techniques to incorporate [3H]thymidine. I suggest, therefore, that cultured neural crest cells which have not terminally differentiated, as judged by morphological criteria and continued proliferation, may express an early developmental form of the NGF receptor.  相似文献   

9.
Spleen cells from BALB/c mice immunized with a plasma membrane-enriched fraction from rabbit sympathetic ganglia were fused with the mouse myeloma NS1. A hybrid clone was obtained that produced monoclonal antibody directed against the receptor for nerve growth factor (NGF). The antibody, identified as IgG, was able to immunoprecipitate solubilized NGF receptor in the presence or absence of bound NGF. The antibody bound specifically to sympathetic membranes with high affinity but did not affect the binding of 125I-NGF to its receptor in sympathetic or sensory neurons or PC12 cells.  相似文献   

10.
The specific binding of various concentrations of 125I-labeled nerve growth factor (NGF) to PC12 cells at 37 degrees C reached maxima after 90 min and then declined to 25% of maximal binding after 10 h. Decreased binding was accompanied by degradation of 125I-NGF and the appearance of acid-soluble biologically inactive 125I (mainly 125I-monoiodotyrosine) in the medium as well as a decrease in the number of surface NGF receptors. The time-dependent decrease in binding and the degradation of 125I-NGF were inhibited by low temperature and the lysosomotropic agent chloroquine while degradation was inhibited by metabolic energy inhibitors in the absence of glucose. Chloroquine also produced an increase in the accumulation of 125I-NGF which was not readily removed from the cells. These data suggest that 125I-NGF bound to PC12 cells is efficiently internalized by receptor-mediated endocytosis and degraded by the lysosomes. It appears from other data that this process does not produce the intracellular signals regulating neurite outgrowth.  相似文献   

11.
The internalization and subsequent fate of the two populations of nerve growth factor (NGF) receptors on pheochromocytoma PC12 cells were explored either by identifying the relative amounts and sizes of the receptors, after incubation of cells with [125I]NGF, by cross-linking with a photoreactive heterobifunctional reagent or by following the topological distribution of the cross-linked receptors with time. The ratio of the slow, high-affinity to the fast, low-affinity NGF receptor decreased over a 5-h incubation with [125I]NGF in a process which did not involve proteolytic conversion of the slow to the fast receptor. During this period the cross-linked slow receptor moved from a trypsin-labile to a trypsin-stable site suggestive of internalization. In contrast, the cross-linked fast NGF receptor remained trypsin sensitive for at least 2 h of incubation, indicative of a constant cell surface localization. The internalized [125I]NGF in the cross-linked slow NGF receptor was not degraded, indicating that cross-linking, by preventing the acid pH-induced dissociation of the NGF-receptor complex in the endosomes, blocks normal sorting of [125I]NGF to the lysosomes. The cross-linked receptor was not recycled to the cell surface. If this reflects the properties of the unmodified receptor then another process, possibly receptor conversion, is required to replenish slow NGF receptors in the cell surface.  相似文献   

12.
PC12 is a nerve growth factor (NGF) responsive cell line which exhibits two classes of NGF receptors distinguishable by different kinetic rate constants, sensitivity to trypsin and resistance to Triton detergent solubilization. Whereas incubation of PC12 cells with wheat germ agglutinin (WGA) prior to addition of 125I-NGF inhibits binding of NGF to both classes of receptors, treatment with WGA subsequent to incubation with NGF does not inhibit NGF binding but causes the class of NGF receptors which exhibit rapid or "Fast" dissociation kinetics prior to lectin treatment to be converted to the form which exhibits "Slow" dissociation kinetics. This WGA-mediated receptor conversion is lectin specific, blocked by N-acetyl-D-glucosamine, occurs at similar rates at 4 and 37 degrees C, and is not impaired by a metabolic poison. NGF receptors converted by WGA, like pre-existing Slow receptors, are resistant to trypsinization and remain associated to Triton X-100 extracted "cytoskeletons." Very similar results were obtained for NGF receptors on a human melanoma cell line A875. These results suggest that Fast and Slow receptors are two interconvertible forms of a single protein, rather than distinct proteins. The significance of the generality of these properties for NGF receptors from diverse species and cell types is discussed.  相似文献   

13.
The receptor for nerve growth factor (NGF) has been purified to near homogeneity from octylglucoside extracts of A875 melanoma cell membranes by the use of repetitive affinity chromatography on NGF-Sepharose. Elution of purified receptor (NGF receptor) was accomplished with 0.15 M NaCl, pH 11.0, containing phosphatidylcholine and octylglucoside. Chromatography on two columns of NGF-Sepharose yielded a 1500-fold purification of the receptor, as assessed by 125I-NGF binding, and permitted recovery of 9% of the total binding activity in the soluble extract. Scatchard analysis of equilibrium binding of 125I-NGF provided similar Kd values for NGF receptors in soluble extracts of A875 membranes (2.2 nM) and with purified NGF receptor (3.1 nM). Examination of NGF receptor after electrophoresis on sodium dodecyl sulfate-polyacrylamide gels revealed the presence of two major peptides, of Mr = 85,000 and Mr = 200,000. Affinity labeling experiments, done with 125I-NGF and A875 cells, soluble extracts of A875 cell membranes, and purified receptor, show that both of these components of the NGF receptor can be specifically cross-linked to 125I-NGF.  相似文献   

14.
beta-nerve growth factor (NGF) was modified by biotinylation via carboxyl group substitution (C-bio-NGF) using biotin hydrazide and the coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, under reaction conditions that yielded an average of 3 biotin additions per NGF subunit. NGF was also biotinylated through amino group substitution, using N-hydroxysuccinimidyl biotin, to produce derivatives with ratios of one, two, and four biotin moieties per NGF subunit (N-bio-NGF). The various biotinylated NGF derivatives were compared with native NGF for their capacity to compete with 125I-NGF for binding to NGF receptors on rat pheochromocytoma (PC12) cells at 4 degrees C. On the basis of such radioreceptor assays, C-bio-NGF was as effective as native NGF in binding to NGF receptors. C-bio-NGF was also as effective as native NGF in promoting neurite outgrowth from PC12 cells. In contrast, N-bio-NGF containing one biotin per NGF subunit was only 28% as active in binding as native NGF. Increasing the biotin:NGF ratio to 2 to 4 further decreased receptor binding to 13% and 6%, respectively, as compared to native NGF. Once bound to cells, C-bio-NGF had the capacity to mediate the specific binding of 125I-streptavidin to PC12 cells. This binding of streptavidin was prevented by excess native NGF and by antiserum to NGF, but not by RNase A, insulin, cytochrome c, or nonimmune serum. In addition, a variant PC12 line lacking functional NGF receptors was not labeled by 125I-streptavidin after prior incubation with C-bio-NGF.  相似文献   

15.
Ganglioside GM1 has been considered to have a neurotrophic factor-like activity. To analyze the effects of endogenously generated GM1, the rat pheochromocytoma cell line PC12 was transfected with the GM1/GD1b/GA1 synthase gene and showed increased expression levels of GM1. To our surprise, GM1+-transfectant cells (GM1+ cells) showed no neurite formation after stimulation with nerve growth factor (NGF). Autophosphorylation of NGF receptor TrkA and activation of ERK1/2 after NGF treatment were scarcely detected in GM1+ cells. Binding of 125I-NGF to PC12 cells was almost equivalent between GM1+ cells and controls. However, dimer formation of TrkA upon NGF treatment was markedly suppressed in GM1+ cells in both cross-linking analysis with Bis(sulfosuccinimidyl)suberate 3 and 125I-NGF binding assay. The sucrose density gradient fractionation of the cell lysate revealed that TrkA primarily located in the lipid raft fraction moved to the non-raft fraction in GM1+ cells. p75NTR and Ras also moved from the raft to non-raft fraction in GM1+ cells, whereas flotillin and GM1 persistently resided in the lipid raft. TrkA kinase activity was differentially regulated when GM1 was added to the kinase assay system in vitro, suggesting suppressive/enhancing effects of GM1 on NGF signals based on the concentration. Measurement of fluorescence recovery after photobleaching revealed that the membrane fluidity was reduced in GM1+ cells. These results suggested that overexpressed GM1 suppresses the differentiation signals mediated by NGF/TrkA by modulating the properties of the lipid raft and the intracellular localization of NGF receptors and relevant signaling molecules.  相似文献   

16.
Incubation of PC12 cells preloaded with 125I-nerve growth factor (NGF) reveals rapidly and slowly dissociating binding components indicative of a heterogeneous population of receptors. If the cells are previously exposed to wheat germ agglutinin (WGA) for 30 min, NGF now binds to an apparently homogeneous receptor population which exhibit slow dissociation kinetics. Total binding is also reduced by 50%. If WGA is added subsequent to 125I-NGF, total binding is not diminished, but rapidly dissociating receptors occupied with NGF are all converted to the slowly dissociating form. This conversion of receptors occurs rapidly, reaching completion within 2 min at 37 degrees or 4 degrees C, and is unaffected by metabolic energy poisons, suggesting that WGA- induced slowly dissociating receptors are not the product of internalization. The effects of the lectin are blocked by the sugar N- acetyl-D-glucosamine, and the lectin-induced slowly dissociating receptors are converted back to rapidly dissociating receptors by addition of this same sugar. WGA also affects the association of the NGF receptor with the Triton X-100 cytoskeleton. Greater than 90% of bound 125I-NGF becomes associated with Triton X-100 insoluble cytoskeletons in the presence of the lectin, compared with less than 20% before lectin addition. Cytoskeleton association of the NGF receptor by WGA shows similar kinetics as the conversion of rapidly to slowly dissociating receptors. This interaction may be involved in the alteration of NGF-receptor binding properties produced by this lectin.  相似文献   

17.
A nerve growth factor (NGF) receptor interactive monoclonal antibody (192-IgG) which enhances beta-NGF binding to PC12 cells has been produced. The hybridoma clone was obtained by fusing Sp2/0- Ag14 myeloma cells with splenocytes from Balb/C mice which had been immunized with n-octyl glucoside solubilized proteins from isolated PC12 cell plasma membranes. The antibody is an IgG, which does not bind beta-NGF. It binds to the same number of sites on PC12 cells at low temperature as does beta-NGF. The 192-IgG increases the apparent affinity of beta-NGF binding to fast receptors on PC12 cells at low temperature by a factor of 2.5- to 4-fold and enhances the photoactivatable cross-linking of beta-NGF to the same receptor while decreasing the cross-linking of beta-NGF to the slow NGF receptor. At 37 degrees C 192-IgG partially inhibits the regeneration of neurites from primed PC12 cells. The 192-IgG also reduces the rate of appearance of binding to slow NGF receptors and increases the proportion of beta-NGF bound to fast receptors at 37 degrees C. These results implicate the slow receptor as the mediator of the biological response. This antibody provides a tool for examining steps in the mechanism of action of beta-NGF after binding to the receptor.  相似文献   

18.
The binding and internalization of 125I-nerve growth factor (NGF) by PC12 pheochromocytoma cells was studied as a function of extracellular potassium concentration. Both surface-bound and internalized fractions of 125I-NGF associated with the cells under depolarizing conditions (50 mM K+) increased to 144 +/- 28% (average +/- SEM, six different cell preparations) and to 176 +/- 12% (n = 6), respectively, of those observed at 6.0 mM K+. Scatchard-type analysis of the data indicates increased sites for the binding and internalization of iodinated NGF by the cells. Similar enhancement was observed for cells treated with NGF as well. This voltage-dependent phenomenon was reversible, and also observed in the presence of veratridine. Moreover, withdrawal of extracellular Ca2+ abolished high K+-induced modulation of 125I-NGF binding and internalization, indicating that this effect may be mediated by Ca2+.  相似文献   

19.
The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of 125I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37°C and 4°C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylalion of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with 125I-NGF binding, WGA but not Con A was found to increase, by scveralfold; the proportion of 125I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.  相似文献   

20.
Association of 125I-nerve growth factor (NGF) with PC12 pheochromocytoma cells was studied. Surface-bound and internalized NGF were distinguished by differential release of the former at low pH, high salt. Binding to the surface was rapid; at 0.2 nM (5 ng/ml) 125I-NGF, this was near-maximal within 5 min. Internalization, in contrast, did not start until about 2 min after NGF exposure and, thereafter, proceeded linearly for at least 1/2-1 h. By the latter time, approximately 75% of total bound NGF was within rather than on the surface of the cells. Binding versus concentration experiments indicated two distinct classes of surface binding sites. For both naive cells and cells treated with NGF for at least a week (primed cells), about 7% of the receptors had an apparent binding constant of about 0.3 nM; the remaining sites half-saturated at approximately 4 nM NGF. The number of each type of site was 3--4-fold higher/mg of protein in primed cells. For both naive and primed cultures, internalization appeared to be mediated by a single class of uptake sites which half-saturated at about 0.3 nM. The maximal rate of uptake by primed cells (200 fmol/h/mg protein) was about twice that for naive cells. Light and electron microscopic autoradiography indicated that the density of binding was substantially higher in primed cultures and that this increase took place over a time course of days to weeks. These findings suggest that NGF brings about long-term increases in its own high- and low-affinity surface receptors, but is internalized only via the high-affinity sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号