首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotide-binding oligomerization domain 2 (Nod2) is a cytosolic sensor for muramyl dipeptide, a component of bacterial peptidoglycan. In this study, we have examined whether Nod2 mediates the immune response of macrophages against Yersinia enterocolitica. Bone-marrow-derived macrophages (BMDMs) were isolated from WT and Nod2-deficient mice and were infected with various strains of Y. enterocolitica. ELISA showed that the production of IL-6 and TNF-α in BMDMs infected with Y. enterocolitica was not affected by the Nod2 deficiency. iNOS mRNA expression was induced in both WT and Nod2-deficienct BMDMs in response to Y. enterocolitica, beginning 2 h after infection. Nitric oxide (NO) production by Y. enterocolitica did not differ between WT and Nod2-deficient BMDMs. Western blot analysis revealed that Y. enterocolitica induces activation of NF-κB, p38, and ERK MAPK through a Nod2-independent pathway. Neither LDH release by Y. enterocolitica nor the phagocytic activity of the macrophages was altered by Nod2 deficiency. An in vivo experiment showed that bacterial clearance ability and production of IL-6 and KC in serum were comparable in WT and Nod2-deficient mice infected with Y. enterocolitica. These findings suggest that Nod2 may not be critical for initiating the innate immune response of macrophages against Yersinia infection.  相似文献   

2.
Y. enterocolitica translocates virulence proteins, called Yop effectors, into the cytosol of eukaryotic cells. Here we investigated whether Y. enterocolitica could translocate Yops into a range of eukaryotic cells including neurons and insect cells. Y. enterocolitica translocated the hybrid reporter protein YopE-Cya into each of the eukaryotic cell types tested. In addition, Y. enterocolitica was cytotoxic for each of the adherent cell types. Thus we detected no limit to the range of eukaryotic cells into which Y. enterocolitica can translocate Yops. The Yop effectors YopE, YopH and YopT were each cytotoxic for the adherent cell types tested, showing that not only is Y. enterocolitica not selective in its translocation of particular Yop effectors into each cell type, but also that the action of these Yop effectors is not cell type specific. Invasin and/or YadA, two powerful adhesins were required for translocation of Yop into non-phagocytic cells but not for translocation into macrophages. To use the Yersinia translocation system for broad applications, a Y. enterocolitica translocation strain and vector for the delivery of heterologous proteins into eukaryotic cells was constructed. This strain + vector combination lacks the translocated Yop effectors and allows delivery into eukaryotic cells of heterologous proteins fused to the minimal N-terminal secretion/translocation signal of YopE. Using this strategy translocation of a YopE-Diphtheria toxin subunit A hybrid protein into several cell types has been shown.  相似文献   

3.
Zheng Y  Lilo S  Mena P  Bliska JB 《PloS one》2012,7(4):e36019
Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJ(KIM)) strains have high cytotoxic activity. In addition, YopJ(KIM)-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJ(KIM)-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJ(KIM)-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJ(KIM). Wild-type and congenic caspase 1 knockout C57BL/6 mice were equally susceptible to lethal infection with Y. pseudotuberculosis ectopically expressing YopP. These data suggest that YopJ-induced caspase-1 activation in Yersinia-infected macrophages is a downstream consequence of necrotic cell death and is dispensable for innate host resistance to a strain with enhanced cytotoxicity.  相似文献   

4.
5.
6.
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.  相似文献   

7.
Type III secretion-dependent translocation of Yop (Yersinia outer proteins) effector proteins into host cells is an essential virulence mechanism common to the pathogenic Yersinia species. One unique feature of this mechanism is the polarized secretion of Yops, i.e. Yops are only secreted at the site of contact with the host cell and not to the surrounding medium. In vitro, secretion occurs in Ca2+-depleted media, a condition believed to somehow mimic cell contact. Three proteins, YopN, LcrG and TyeA have been suggested to control secretion and mutating any of these genes results in constitutive secretion. In addition, in Y. enterocolitica TyeA has been implied to be specifically required for delivery of a subset of Yop effectors into infected cells. In this work we have investigated the role of TyeA in secretion and translocation of Yop effectors by Y. pseudotuberculosis. An in frame deletion mutant of tyeA was found to be temperature-sensitive for growth and this phenotype correlated to a lowered expression of the negative regulatory element LcrQ. In medium containing Ca2+, Yop expression was somewhat elevated compared to the wild-type strain and low levels of Yop secretion was also seen. Somewhat surprisingly, expression and secretion of Yops was lower than for the wild-type strain when the tyeA mutant was grown in Ca2+-depleted medium. Translocation of YopE, YopH, YopJ and YopM into infected HeLa cells was significantly lower in comparison with the isogenic wild-type strain and Yop proteins could also be recovered in the tissue culture medium. This indicated that the tyeA mutant had lost the ability to translocate Yop proteins by a polarized mechanism. In order to exclude that the defect in translocation seen in the tyeA mutant was a result of lowered expression/secretion of Yops, a double lcrQ/tyeA mutant was constructed. This strain was de-repressed for Yop expression and secretion but was still impaired for translocation of both YopE and YopM. In addition, the low level of YopE translocation in the tyeA mutant was independent of the YopE chaperone YerA/SycE. TyeA was found to localize to the cytoplasm of the bacterium and we were unable to find any evidence that TyeA was secreted or surface located. From our studies in Y. pseudotuberculosis we conclude that TyeA is involved in regulation of Yop expression and required for polarized delivery of Yop effectors in general and is not as suggested in Y. enterocolitica directly required for translocation of a subset of Yop effectors.  相似文献   

8.
Yersinia pestis and the enteropathogenic Yersinia pseudotuberculosis and Yersinia enterocolitica share the virulence-antigen LcrV. Previously, using reverse genetics we have proven that LcrV contributes to the virulence of Y. enterocolitica serotype O:8 by inducing IL-10 via Toll-like receptor 2 (TLR2). However, both the ability of Y. pestis LcrV to activate TLR2 and a possible role of TLR2-dependent IL-10 induction by LcrV in Y. pestis are not yet known. To eliminate interference from additional protein sequences, we produced LcrVs without affinity tags from Y. pestis and from Y. enterocolitica O:8 (LcrVO:8). LcrVO:8 was much more potent in TLR2-activity than Y. pestis LcrV. To analyse the role of TLR2 in plague, we infected both wild-type and TLR2-/- mice subcutaneously with Y. pestis GB. While TLR2-/- mice exhibited lower blood levels of IL-10 (day 2 post-infection) and of the pro-inflammatory cytokines TNF-alpha, IFN-gamma and MCP-1 (day 4) than wild-type mice, there was no significant difference in survival. The low TLR2-activity of Y. pestis LcrV and associated cytokine expression might explain why - in contrast to Y. enterocolitica O:8 infection - TLR2-deficient mice are not more resistant than wild-type mice in a bubonic plague model.  相似文献   

9.
Full virulence of Yersinia enterocolitica Biovar 1B requires two distinct and distantly related contact-dependent type III secretion (T3S) systems. The plasmid-encoded Ysc T3S system is essential for systemic stages of infection and the Yop effector proteins it translocates have been extensively studied. The chromosome-encoded Ysa T3S system contributes to gastrointestinal stages of infection, but the suite of Ysp effectors proteins it translocates into host cells remains obscure. Using a proteomics-based approach, the Ysa T3S system was analysed revealing a complex set of 15 secreted Ysp proteins. Seven of these proteins were previously described (YspA, YspB, YspC, YspD, YopE, YopN and YopP). Eight of these Ysps (YspK, YspI, YspE, YspF, YspP, YspY, YspN and YspL) had not previously been characterized. Several of the new Ysps are homologous to other virulence factors, including YspP with similarity to the Yersinia protein tyrosine phosphatase YopH and YspK with similarity to the Shigella serine/threonine kinase OspG. Biochemical analysis of purified hexa-histidine tagged YspK and YspP established that these proteins have kinase and phosphatase activity respectively. Infection of eukaryotic cells with Y. enterocolitica strains expressing a Ysp-CyaA chimeric protein resulted in Ysa T3S system-dependent increases in cytosolic levels of cAMP for six Ysps (YspK, YspI, YspE, YspF, YspP and YspL), but not two others (YspY and YspN). YspN, however, was required for translocation of effector proteins into eukaryotic cells by the Ysa T3S system. Competition assays in BALB/c mice revealed that mutants defective for the production of an individual Ysp are affected for colonization of gastrointestinal tissues. Collectively, the results of this study support the hypothesis that the Ysa T3S system targets a complex suite of effector proteins into host cells to affect the outcome of an infection. Identification of the suite of effectors delivered by the Ysa T3S system reveals that host cell signalling pathways are the probable targets of several Ysp effectors.  相似文献   

10.
Th1 cells, in cooperation with activated macrophages, are required to overcome Yersinia enterocolitica infection in mice. The pathway macrophages utilize to metabolize arginine can alter the outcome of inflammation in different ways. The objective of this study was to verify the pattern of macrophages activation in Y. enterocolitica infection of BALB/c (Yersinia-susceptible) and C57BL/6 (Yersinia-resistant) mice. Both strains of mice were infected with Y. enterocolitica O:8 WA 2707. Peritoneal macrophages and spleen cells were obtained on the 1st, 3rd and 5th day post-infection. The iNOS and the arginase activities were assayed in supernatants of macrophage cultures, by measuring their NO/citrulline and ornithine products, respectively. TGFbeta-1 production was also assayed. The Th1 and Th2 responses were evaluated in supernatants of lymphocyte cultures, by IFN-gamma and IL-4 production. Our results showed that in the early phase of Y. enterocolitica infection (1st and 3rd day), the macrophages from C57BL/6 mice produced higher levels of NO/citrulline and lower levels of ornithine than macrophages from BALB/c mice. The infection with Y. enterocolitica leads to an increase in the TGF-beta1 and IL-4 production by BALB/c mice and to an increase in the IFN-gamma levels produced by C57BL/6 mice. These results suggest that Y. enterocolitica infection leads to the modulation of M1 macrophages in C57Bl/6 mice, and M2 macrophages in BALB/c mice. The predominant macrophage population (M1 or M2) at the 1st and 3rd day of infection thus seems to be important in determining Y. enterocolitica susceptibility or resistance.  相似文献   

11.
Pathogenicity of many Gram-negative bacteria relies on a type III secretion (T3S) apparatus, which is used for delivery of bacterial effectors into the host cell cytoplasm allowing the bacteria to manipulate host cell cytoskeleton network as well as to interfere with intracellular signaling pathways. In this study, we investigated the potential of the Shigella flexneri T3SA as an in vivo delivery system for biologically active molecules such as cytokines. The anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist (IL-1ra) were genetically fused to the first 30 or 60 residues of the Shigella T3S effector IpaH9.8 or to the first 50 residues of the Yersinia enterocolitica effector YopE and the recombinant fusion proteins were expressed in S. flexneri. YopE(50)-IL-10, IpaH(60)-IL-10, and IpaH(60)-IL-1ra were efficiently secreted via the T3S apparatus of Shigella. Moreover, these recombinant proteins did not impair the invasive ability of the bacteria in vitro. In a murine model, Shigella strains expressing YopE(50)-IL-10, IpaH(60)-IL-10, and IpaH(60)-IL-1ra induced a lower mortality in mice that was associated with reduced inflammation and a restricted localization of bacteria within the lung tissues as compared with wild-type Shigella. Moreover, the level of TNF-alpha and IL-1beta mRNA were reduced in the lungs following infection by IL-10- and IL-1ra-secreting Shigella, respectively. These findings demonstrate that the Shigella T3S apparatus can deliver biologically active cytokines in vivo, thus opening new avenues for the use of attenuated bacteria to deliver proteins for immunomodulation or gene therapy purposes.  相似文献   

12.
Numerous microbial pathogens modulate or interfere with cell death pathways in cultured cells. However, the precise role of host cell death during in vivo infection remains poorly understood. Macrophages infected by pathogenic species of Yersinia typically undergo an apoptotic cell death. This is due to the activity of a Type III secreted effector protein, designated YopJ in Y. pseudotuberculosis and Y. pestis, and YopP in the closely related Y. enterocolitica. It has recently been reported that Y. enterocolitica YopP shows intrinsically greater capacity for being secreted than Y. pestis YopJ, and that this correlates with enhanced cytotoxicity observed for high virulence serotypes of Y. enterocolitica. The enzymatic activity and secretory capacity of YopP from different Y. enterocolitica serotypes have been shown to be variable. However, the underlying basis for differential secretion of YopJ/YopP, and whether reduced secretion of YopJ by Y. pestis plays a role in pathogenesis during in vivo infection, is not currently known. It has also been reported that similar to macrophages, Y. enterocolitica infection of dendritic cells leads to YopP-dependent cell death. We demonstrate here that in contrast to Y. enterocolitica, Y. pseudotuberculosis infection of bone marrow-derived dendritic cells does not lead to increased cell death. However, death of Y. pseudotuberculosis-infected dendritic cells is enhanced by ectopic expression of YopP in place of YopJ. We further show that polymorphisms at the N-terminus of the YopP/YopJ proteins are responsible for their differential secretion, translocation, and consequent cytotoxicity. Mutation of two amino acids in YopJ markedly enhanced both translocation and cytotoxicity. Surprisingly, expression of YopP or a hypersecreted mutant of YopJ in Y. pseudotuberculosis resulted in its attenuation in oral mouse infection. Complete absence of YopJ also resulted in attenuation of virulence, in accordance with previous observations. These findings suggest that control of cytotoxicity is an important virulence property for Y. pseudotuberculosis, and that intermediate levels of YopJ-mediated cytotoxicity are necessary for maximal systemic virulence of this bacterial pathogen.  相似文献   

13.
14.
Yersinia enterocolitica O:8 has two contact-dependent type III secretion systems (TTSSs). The Ysa TTSS is encoded by a set of genes located on the chromosome and exports Ysp proteins. The Ysc TTSS and the Yop effector proteins it exports are encoded by genes located on plasmid pYVe8081. In this study, secretion of YspG, YspH, and YspJ by the Ysa TTSS was shown to require pYVe8081. Furthermore, mutations that blocked the function of the Ysc TTSS did not affect YspG, YspH, and YspJ production. This indicated that YspG, YspH, and YspJ are encoded by genes located on pYVe8081 and that they may correspond to Yops. A comparison of Ysps with Yop effectors secreted by Y. enterocolitica indicated that YspG, YspH, and YspJ have apparent molecular masses similar to those of YopN, YopP, and YopE, respectively. Immunoblot analysis demonstrated that antibodies directed against YopN, YopP, and YopE recognized YspG, YspH, and YspJ. Furthermore, mutations in yopN, yopP, and yopE specifically blocked YopN, YopP, and YopE secretion by the Ysc TTSS and YspG, YspH, and YspJ secretion by the Ysa TTSS. These results indicate YspG, YspH, and YspJ are actually YopN, YopP, and YopE. Additional analysis demonstrated that YopP and YspH secretion was restored to yopP mutants by complementation in trans with a wild-type copy of the yopP gene. Examination of Y. enterocolitica-infected J774A.1 macrophages revealed that both the Ysc and Ysa TTSSs contribute to YopP-dependent suppression of tumor necrosis factor alpha production. This indicates that both the Ysa and Ysc TTSSs are capable of targeting YopP and that they influence Y. enterocolitica interactions with macrophages. Taken together, these results suggest that the Ysa and Ysc TTSSs contribute to Y. enterocolitica virulence by exporting both unique and common subsets of effectors.  相似文献   

15.
A type III secretion system (T3SS) in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJKIM) has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJKIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJKIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJKIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJCO92, YopJKIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJKIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJCO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro-inflammatory form of apoptosis may represent an early innate immune response to highly virulent pathogens such as Y. pestis KIM that have evolved an enhanced ability to inhibit host signaling pathways.  相似文献   

16.
Immunological and electron microscopy investigations of the phagocytic and killing activities of peritoneal macrophages from rats and mice against Yersinia enterocolitica serotype O:8 cells were performed. The effect of in vivo application of cytoplasmic membranes (CM) from the stable Escherichia coli WF+ L-form on macrophage activity was also studied. It was established that rat macrophages more actively phagocytosed the plasmidless pYV(-) Y. enterocolitica cells, compared to the plasmid-bearing pYV(+) Y. enterocolitica cells. The killing ability against both variants of the Y. enterocolitica strain was significantly enhanced in macrophages from CM-treated rats after 2 h, 4 h, and 24 h incubation. The CM treatment enhanced the phagocytic activity of the macrophages. The in vitro interaction of normal and immunostimulated rat macrophages with both pYV(+) and pYV(-) variants of Y. enterocolitica did not lead to any additional apoptotic and necrotic changes in macrophages compared to control macrophages, which were cultivated without Y. enterocolitica. Electron-microscopic investigation showed that mouse macrophages eliminated Y. enterocolitica pYV(+) cells in vivo after 24 h. No engulfed or digested bacterial cells were observed. Activation of cell surfaces and vacuolization of macrophage cytoplasm, both of CM-treated non-infected and infected mice, were observed. The experimental results showed that Y. enterocolitica pYV(+) cells could be eliminated by peritoneal macrophages.  相似文献   

17.
Yersinia enterocolitica induces apoptosis in macrophages by injecting the plasmid-encoded YopP (YopJ in other Yersinia species). Recently it was reported that YopP/J is a member of an ubiquitin-like protein cysteine protease family and that the catalytic core of YopP/J is required for its inhibition of the MAPK and NF-kappaB pathways. Here we analyzed the YopP/J-induced apoptotic signaling pathway. YopP-mediated cell death could be inhibited by addition of the zVAD caspase inhibitor, but not by DEVD or YVAD. Generation of truncated Bid (tBid) was the first apoptosis-related event that we observed. The subsequent translocation of tBid to the mitochondria induced the release of cytochrome c, leading to the activation of procaspase-9 and the executioner procaspases-3 and -7. Inhibition of the postmitochondrial executioner caspases-3 and -7 did not affect Bid cleavage. Bid cleavage could not be observed in a yopP-deficient Y. enterocolitica strain, showing that this event requires YopP. Disruption of the catalytic core of YopP abolished the rapid generation of tBid, thereby hampering induction of apoptosis by Y. enterocolitica. This finding supports the idea that YopP/J induces apoptosis by directly acting on cell death pathways, rather than being the mere consequence of gene induction inhibition in combination with microbial stimulation of the macrophage.  相似文献   

18.
Type III secretion systems are used by several pathogens to translocate effector proteins into host cells. Yersinia pseudotuberculosis delivers several Yop effectors (e.g. YopH, YopE and YopJ) to counteract signalling responses during infection. YopB, YopD and LcrV are components of the translocation machinery. Here, we demonstrate that a type III translocation protein stimulates proinflammatory signalling in host cells, and that multiple effector Yops counteract this response. To examine proinflammatory signalling by the type III translocation machinery, HeLa cells infected with wild-type or Yop-Y. pseudotuberculosis strains were assayed for interleukin (IL)-8 production. HeLa cells infected with a YopEHJ- triple mutant released significantly more IL-8 than HeLa cells infected with isogenic wild-type, YopE-, YopH- or YopJ- bacteria. Complementation analysis demonstrated that YopE, YopH or YopJ are sufficient to counteract IL-8 production. IL-8 production required YopB, but did not require YopD, pore formation or invasin-mediated adhesion. In addition, YopB was required for activation of nuclear factor kappa B, the mitogen-activated protein kinases ERK and JNK and the small GTPase Ras in HeLa cells infected with the YopEHJ- mutant. We conclude that interaction of the Yersinia type III translocator factor YopB with the host cell triggers a proinflammatory signalling response that is counteracted by multiple effectors in host cells.  相似文献   

19.
We sought to determine the impact of bovine IFN-gamma on the interaction between Mycobacterium bovis and bovine macrophages. Bovine macrophages released small amounts of nitric oxide (NO), TNF-alpha, IL-1beta and IL-12 upon infection with bacille Calmette-Guérin (BCG). Prior pulsing of cells with IFN-gamma significantly enhanced the release of NO and IL-12. Infection of bovine macrophages with virulent M. bovis led to the release of higher levels of pro-inflammatory mediators, compared to levels released upon BCG infection. IFN-gamma treatment of macrophages enhanced the release of pro-inflammatory mediators, but did not modify bacterial replication in M. bovis-infected macrophages. Treatment of macrophages with a combination of IFN-gamma and LPS led to a reduction in bacterial replication. Infected cells treated with IFN-gamma/LPS progressed mostly through an apoptotic pathway, whereas untreated infected cells eventually died by necrosis. Agents that prevented the acquisition of bacteriostatic activity by activated macrophages also prevented the induction of apoptosis in infected macrophages (IL-10 and neutralizing anti-TNF-alpha). We conclude that virulent M. bovis is a major determinant of release of pro-inflammatory cytokines by macrophages. IFN-gamma amplifies the macrophage cytokine release in response to M. bovis. Induction of apoptosis is closely linked to the emergence of macrophage resistance to M. bovis replication, which is dependent on endogenous TNF-alpha release.  相似文献   

20.
IL-1beta released from activated macrophages contributes significantly to tissue damage in inflammatory, degenerative, and autoimmune diseases. In the present study, we identified a novel mechanism of IL-1beta release from activated microglia (brain macrophages) that occurred independently of P2X(7) ATP receptor activation. Stimulation of LPS-preactivated microglia with lysophosphatidylcholine (LPC) caused rapid processing and secretion of mature 17-kDa IL-1beta. Neither LPC-induced IL-1beta release nor LPC-stimulated intracellular Ca(2+) increases were affected by inhibition of P2X(7) ATP receptors with oxidized ATP. Microglial LPC-induced IL-1beta release was suppressed in Ca(2+)-free medium or during inhibition of nonselective cation channels with Gd(3+) or La(3+). It was also attenuated when Ca(2+)-activated K(+) channels were blocked with charybdotoxin (CTX). The electroneutral K(+) ionophore nigericin did not reverse the suppressive effects of CTX on LPC-stimulated IL-1beta release, demonstrating the importance of membrane hyperpolarization. Furthermore, LPC-stimulated caspase activity was unaffected by Ca(2+)-free medium or CTX, suggesting that secretion but not processing of IL-1beta is Ca(2+)- and voltage-dependent. In summary, these data indicate that the activity of nonselective cation channels and Ca(2+)-activated K(+) channels is required for optimal IL-1beta release from LPC-stimulated microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号