首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human chondrocytes in tridimensional culture   总被引:3,自引:0,他引:3  
Summary Cartilage was taken from the macroscopically normal part of human femoral heads immediately after orthopedic surgical operations for total prothesis consecuitive to hip arthrosis. After clostridial collagenase digestion and repeated washings, chondrocytes (106 cells) were cultivated in a gyrotory shaker (100 rpm). Under these conditions, cells were kept in suspension and after 3 to 5 d formed a flaky aggregate which, on Day 10, became dense. These chondrocytes were morphologically differentiated: they had a round shape, were situated inside cavities, and were surrounded by a new matrix. Histochemical methods showed the presence of collagen and polysaccharides in cell cytoplasm and in intercellular matrix, and the immunofluorescence method using specific antisera (anticartilage proteoglycans and anti-type II collagen) showed that these two constituts were in tentercellular matrix. The measurement of the amounts of proteoglycans (PG) released into culture media and those present in chondrocyte aggregate (by a specific PG radioimmunoassay) showed a maximum production on Days 3 to 5 of culture, then the production decreased and stabilized (from Day 10 to the end of culture). The observed difference between the amounts of PG in aggregates after 20 d and those after 2 h of culture demonstrated that PG neosynthesis did occur during cultivation. This conclusion was supported by other results obtained by [14C]glucosamine incorporation in chondrocyte aggregates. Moreover, the aggregate fresh weight related to cell number (appreciated by DNA assay) increased significantly with culture duration. Three-dimensional chondrocyte culture represents an interesting model: chondrocytes were differentiated morphologically as well as biosynthetically and synthesized a new cartilage matrix. This work was suported by grant 3.4529.81 from FRSM, Belgium.  相似文献   

2.
Summary Chondrocytes isolated from the proliferative and differentiating zones of 3-wk-old chick growth plates were cultured in the presence of 10% fetal bovine serum (FBS) and ascorbic acid for up to 21 d in a high cell density culture within Eppendorf tubes. The proliferative, differentiating, and calcification properties of the chondrocytes were examined by immunolocalization and by enzyme histochemical and biochemical methods. The cells maintained a chondrocyte phenotype throughout culture: they were round in shape and synthesized both collagen type II and proteoglycans. The expression of a hypertrophic phenotype was evident by Day 3 of culture and from this time onwards characteristics of terminal differentiation were observed. The cells were positive for both alkaline phosphatase (ALP) activity and c-myc protein and the surrounding matrix stained strongly for collagen type X. Small foci of mineralization associated with individual chondrocytes were first evident by Day 6 and more widespread areas of mineralization occupying large areas of matrix were present by Day 15. Mineralization occurred without the addition of exogenous phosphate to the medium. This culture system displays characteristics that are similar in both morphological and developmental terms to that of chick chondrocyte differentiation and calcification in vivo and therefore offers an excellent in vitro model for endochondral ossification.  相似文献   

3.
To circumvent the problem of a sufficient number of cells for cartilage engineering, the authors previously developed a two-stage culture system to redifferentiate monolayer culture-expanded dedifferentiated human articular chondrocytes by co-culture with primary bovine chondrocytes (bP0). The aim of this study was to analyze the composition of the cartilage tissue formed in stage 1 and compare it with bP0 grown alone to determine the optimal length of the co-culture stage of the system. Biochemical data show that extracellular matrix accumulation was evident after 2 weeks of co-culture, which was 1 week behind the bP0 control culture. By 3 to 4 weeks, the amounts of accumulated proteoglycans and collagens were comparable. Expression of chondrogenic genes, Sox 9, aggrecan, and collagen type II, was also at similar levels by week 3 of culture. Immunohistochemical staining of both co-culture and control tissues showed accumulation of type II collagen, aggrecan, biglycan, decorin, and chondroitin sulfate in appropriate zonal distributions. These data indicate that co-cultured cells form cartilaginous tissue that starts to resemble that formed by bP0 after 3 weeks, suggesting that the optimal time to terminate the co-culture stage, isolate the now redifferentiated cells, and start stage 2 is just after 3 weeks.  相似文献   

4.
Summary This study describes the ability of aortic smooth muscle cells to synthesize and accumulate collagen with time in culture. Inasmuch as smooth muscle cell cultures multilayer and continue to divide, albeit slowly, and can be maintained in the same vessels where seeded for extended periods of time, a long-term aging study from a single subcultivated population of cells was carried out. This is different from the usual cell-culture aging achieved by an increase in cell population doublings obtained by repeated subcultivations. The latter process, which is trypsin induced, involves a changing cellular environment including the extracellular matrix that is produced by the cells in culture. Second subcultures of weanling rabbit, aortic media, smooth muscle cells maintained for different periods of time up to 14 wk displayed decreasing hydroxyproline formation with time. Proline hydroxylation was determined by pulsing these second-passage cells with [14C]proline for 24 h at various times during the 14 wk period. The cell layer and medium were evaluated separately for radioactive proline and hydroxyproline and the medium for bacterial collagenase-susceptible protein as well. The percent of hydroxylation in the medium decreased from >31% within 1 wk after plating to 15.2% after 14 wk in culture. The percent of collagenase-susceptible protein in the medium decreased in a comparable manner. The DNA levels increased during the entire period although initially somewhat more rapidly. Accumulation of protein in the extracellular matrix continued during the 14-wk span. The accumulation of hydroxyproline in the extracellular matrix also continued to increase throughout the culture period, but it did slow down significantly. Yet the cells appear not to have lost their ability to accumulate connective tissue and protein in the insoluble cell layer. The data suggest clearly that the percent collagen synthesis relative to total protein synthesis decreases in the older cultures; total protein synthesis also decreases as expected. This study was supported by NIH Program Projects AG00001 and HL 13262.  相似文献   

5.
Osteoarthritis (OA) is characterized by irreversible destruction of the articular cartilage. OA affects more than 100 million individuals worldwide and has a major impact on patients’ quality of life. The lack of effective therapy that prevents, inhibits or reverses the progress of OA often leaves only the option of surgical interventions. Thus, identification of the factors that contribute to OA pathogenesis is necessary for better understanding of OA pathobiology and discovery of effective therapies. Recent proteomic studies have been conducted to identify pathological mediators and biomarkers of OA, which have pinpointed novel pathways involved in cartilage degeneration. This article summarizes the recent findings, compares major techniques used in OA proteomics and discusses key proteins in OA and their potential use as therapeutic targets.  相似文献   

6.
Wu WT  Lyu SR  Hsieh WH 《Cryobiology》2005,51(3):330-338
In order to successfully cryopreserve articular cartilage chondrocytes, it is important to characterize their osmotic response during the cryopreservation process, as the ice forms and the solutes concentrate. In this study, experimental work was undertaken to determine the osmotic parameters of articular cartilage chondrocytes. The osmotically inactive volume of articular cartilage chondrocytes was determined to be 44% of the isotonic volume. The membrane hydraulic conductivity parameters for water were determined by fitting a theoretical water transport model to the experimentally obtained volumetric shrinkage data; the membrane hydraulic conductivity parameter L(Pg) was found to be 0.0633 microm/min/atm, and the activation energy E, 8.23 kcal/mol. The simulated cooling process, using the osmotic parameters obtained in this study, suggests a cooling rate of 80 degrees C/min for the cryopreservation of the articular cartilage chondrocytes of hogs. The data obtained in this study could serve as a starting point for those interested in cryopreservation of chondrocytes from articular cartilage in other species in which there is clinical interest and there are no parameters for prediction of responses.  相似文献   

7.
In order to study the expression of the morphological and functional characteristics of human thyroid cells, 3-dimensional cultures were carried out in collagen gel. This substrate allows the cells to retain their organization in follicles with a normal polarity. Cellular polarities appeared normal at the time of collagen embedding, but there was a delay of 4-5 days in culture before the maximal TSH stimulation of 125I- uptake and of cAMP accumulation occurred. In normal and adenoma-derived cells, 125I- uptake, which could be increased by TSH, was demonstrated. cAMP accumulated in the culture medium and thyroglobulin was secreted into the follicle lumen. Of the 4 differentiated carcinomas for which the 72-hr uptake of 125I- was measured, only 2 displayed slight 125I- uptake and response to TSH. Thus, human thyroid cells exhibit better morphological and functional differentiation in collagen gel culture than in monolayer culture. Furthermore, in a variety of pathological cases studied, the expression of specific characteristics in culture varied in a fashion similar to differences observed in vivo.  相似文献   

8.
Tissue engineering is a promising option for cartilage repair. However, several hurdles still need to be overcome to develop functional tissue constructs suitable for implantation. One of the most common challenges is the general low capacity of chondrocytes to synthesize cartilage-specific extracellular matrix (ECM). While different approaches have been explored to improve the biosynthetic response of chondrocytes, several studies have demonstrated that the nutritional environment (e.g., glucose concentration and media volume) can have a profound effect on ECM synthesis. Thus, the purpose of this study was to optimize the formulation of cell culture media to upregulate the accumulation of cartilaginous ECM constituents (i.e., proteoglycans and collagen) by chondrocytes in 3D culture. Using response surface methodology, four different media factors (basal media, media volume, glucose, and glutamine) were first screened to determine optimal media formulations. Constructs were then cultured under candidate optimal media formulations for 4 weeks and analyzed for their biochemical and structural properties. Interestingly, the maximal accumulation of proteoglycans and collagen appeared to be elicited by different media formulations. Most notably, proteoglycan accumulation was favored by high volume, low glucose-containing DMEM/F12 (1:1) media whereas collagen accumulation was favored by high volume, high glucose-containing F12 media. While high glutamine-containing media elicited increased DNA content, glutamine concentration had no apparent effect on ECM accumulation. Therefore, optimizing the nutritional environment during chondrocyte culture appears to be a promising, straight-forward approach to improve cartilaginous tissue formation. Future work will investigate the combined effects of the nutritional environment and external stimuli.  相似文献   

9.
Primary cultures of rabbit articular chondrocytes have been subcultured within three-dimensional (3D) collagen gels. Under these conditions, the cells remained viable and divided, but with a lower proliferation rate than that observed in control monolayer cultures. Flow cytometric analysis of progression of the cells into the cell cycle has confirmed and extended these findings. Also the cellular volume was decreased in 3D-culture, being in the same range as thein vivo size of cartilage cells. Specific staining for proteoglycans and type II collagen immunolocalization on sections of gels showed the expression of differentiated phenotypes and revealed the accumulation of these matrix components in the immediate surroundings of the cells. The use of Ultroser G (a serum substitute) improved the conditions for 3D- culture of rabbit articular chondrocytes.  相似文献   

10.
Summary An organ culture system is described for adult human articular cartilage obtained from joints afterfemoral head replacement operations. Cartilage slices maintain maximal viability for 2 days in culture as assessed by uptake of [3H]uridine and [3H]leucine into whole tissue, and35SO4 into sulphated glycosaminoglycans (GAGs). Since GAGs are the components of cartilage matrix, the depletion of which is associated with osteoarthrosis, a method for measuring sulphated GAG synthesis in culture has been investigated.  相似文献   

11.
A scaffold made of equine collagen type I based material has been assessed for its use in the preparation of tissue-engineered cartilage implants with human articular chondrocytes. Improvements of cell-seeding efficiency and specific gene expression were studied by combining solid scaffold with fibrin glue or human blood plasma. Following 3 weeks of static culture, mRNA expression levels of collagen type I, collagen type II, aggrecan and versican were analyzed by real-time quantitative PCR and compared to those in native cartilage and monolayer cell cultures.Constructs prepared with fibrin glue or plasma showed higher cell seeding efficiencies than those prepared without gel. Chondrocytes seeded directly onto a collagen scaffold appeared fibroblastic in shape while those encapsulated in fibrin gel were spherical. The presence of fibrin glue positively influences on mRNA levels of collagen type II and aggrecan, while blood plasma enhanced only the level of collagen type II expression. Levels of collagen type I and versican decreased in presence of fibrin glue.In orthopaedics, the combination of solid collagen fleece with fibrin gel for implant preparation is seen to be preferred over solid material or even cells in a suspension, since fibrin gel improves seeding capacity of the scaffold, supports equal distribution of cells and stimulates higher chondrogenic phenotype expression.  相似文献   

12.
Chondrocytes can be isolated from human adult cartilage from metatarsal phalangeal joints. After enzymatic digestion to isolate viable cells, confluent monolayers were obtained 2-4 weeks after the start of cell division. Chondrocytes cultures, initiated and maintained in HAM's F12 with bovine fetal serum without the addition of other growth factors, produced in vitro a matrix rich in collagen and proteoglycans. Although several studies reported phenotypic instability, our results showed that the cell retain for more than 5 months in culture their differentiated characteristics, including the ability to produce cartilage-specific molecules. Chondrocyte cell lines should be useful in studying the functions of these cells from normal and abnormal tissue and for pharmacological studies in vitro.  相似文献   

13.
The effect of retinoic acid (RA) on primary cultures of growth plate chondrocytes obtained from weight-bearing joints was examined. Chondrocytes were isolated from the tibial epiphysis of 6- to 8-week-old broiler-strain chickens and cultured in either serum-containing or serum-free media. RA was administered at low levels either transiently or continuously after the cells had become established in culture. Effects of RA on cellular protein levels, alkaline phosphatase (AP) activity, synthesis of proteoglycan (PG), matrix calcification, cellular morphology, synthesis of tissue-specific types of collagen, and level of matrix metalloproteinase (MMP) activity were explored. RA treatment generally increased AP activity, and stimulated mineral deposition, especially if present continuously. RA also caused a shift in cell morphology from spherical/polygonal to spindle-like. This occurred in conjunction with a change in the type of collagen synthesized: type X and II collagens were decreased, while synthesis of type I collagen was increased. There was also a marked increase in the activity of MMP. Contrasting effects of continuous RA treatment on cellular protein levels were seen: they were enhanced in serum-containing media, but decreased in serum-free HL-1 media. Levels of RA as low as 10 nM significantly inhibited PG synthesis and caused depletion in the levels of PG in the medium and cell-matrix layer. Thus, in these appendicular chondrocytes, RA suppressed chondrocytic (PG, cartilage-specific collagens) and enhanced osteoblastic phenotype (cell morphology, type I collagen, alkaline phosphatase, and mineralization). J. Cell. Biochem. 65:209–230. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
Osteoarthritis is the most prevalent form of arthritis in the world and it is becoming a major public health problem. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to de-differentiation. The involvement of signaling pathways, such as the Wnt pathway, during cartilage pathology has been reported. Wnt signaling regulates critical biological processes. Wnt signals are transduced through at least three intracellular signaling pathways including the canonical Wnt/β-catenin pathway, the Wnt/Ca2 + pathway and the Wnt/planar cell polarity pathway. We investigated the involvement of the Wnt canonical and non-canonical pathways in human articular chondrocyte de-differentiation in vitro. Human articular chondrocytes were cultured through four passages with no treatment, or with sFRP3 treatment, an inhibitor of Wnt pathways, or with DKK1 treatment, an inhibitor of the canonical pathway. Chondrocyte-secreted markers and Wnt pathway components were analyzed using western blotting and qPCR. Inhibition of the Wnt pathway showed that the canonical Wnt signaling probably is responsible for inhibition of collagen II expression, activation of metalloproteinase 13 expression and regulation of Wnt7a and c-jun expression during chondrocyte de-differentiation in vitro. Our results also suggest that expressions of eNOS, Wnt5a and cyclinE1 are regulated by non-canonical Wnt signaling.  相似文献   

16.
Summary A model system has been developed to investigate cell deformation of chondrocytesin vitro. Chondrocytes were isolated from bovine articular cartilage by enzymatic digestion and seeded in agarose (type VII) at a final concentration of 2 × 106 cells·ml−1 in 3% agarose. Mechanical evaluation of the system showed no change in the tangent modulus of agarose/chondrocyte cultures over a 6-d culture period. The resulting agarose/chondrocyte cultures were subjected to compressive strains ranging from 5–20%. Cell shape was assessed by measuring the dimensions of the cell both perpendicular (x) and parallel (y) to the axis of compression and deformation indices (I = y/x) calculated. Cell deformation increased with the level of strain applied for freshly isolated chondrocytes. The cultures were maintained in medium that inhibits or stimulates matrix production (DMEM and DMEM + 20% FCS, respectively) in order to assess the effect of cartilaginous matrix on chondrocyte deformation. Matrix elaborated by the cells markedly influenced levels of cell deformation, an increase in matrix leading to a decrease in cell deformation. Freshly isolated deep zone chondrocytes were found to deform significantly more than surface zone chondrocytes, although this effect was lost after 6 d in culture. The elaborated matrix also altered the recovery characteristics of the chondrocytes following constant compressive strain of 15% for 24 h. Cells that had elaborated matrix took several hours to return to unloaded shape, while cells without matrix returned to the unloaded shape instantly.  相似文献   

17.
A cell leakproof porous poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi‐layered PLGA mesh. The PLGA‐collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi‐layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi‐layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real‐time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage‐like tissue when being cultured in the cell leakproof PLGA‐collagen hybrid scaffold. The cell leakproof PLGA‐collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
This study evaluated the extent of differentiation and cartilage biosynthetic capacity of human adult adipose‐derived stem cells relative to human fetal chondrocytes. Both types of cell were seeded into nonwoven‐mesh polyglycolic acid (PGA) scaffolds and cultured under dynamic conditions with and without addition of TGF‐β1 and insulin. Gene expression for aggrecan and collagen type II was upregulated in the stem cells in the presence of growth factors, and key components of articular cartilage such as glycosaminoglycan (GAG) and collagen type II were synthesized in cultured tissue constructs. However, on a per cell basis and in the presence of growth factors, accumulation of GAG and collagen type II were, respectively, 3.4‐ and 6.1‐fold lower in the stem cell cultures than in the chondrocyte cultures. Although the stem cells synthesized significantly higher levels of total collagen than the chondrocytes, only about 2.4% of this collagen was collagen type II. Relative to cultures without added growth factors, treatment of the stem cells with TGF‐β1 and insulin resulted in a 59% increase in GAG synthesis, but there was no significant change in collagen production even though collagen type II gene expression was upregulated 530‐fold. In contrast, in the chondrocyte cultures, synthesis of collagen type II and levels of collagen type II as a percentage of total collagen more than doubled after growth factors were applied. Although considerable progress has been achieved to develop differentiation strategies and scaffold‐based culture techniques for adult mesenchymal stem cells, the extent of differentiation of human adipose‐derived stem cells in this study and their capacity for cartilage synthesis fell considerably short of those of fetal chondrocytes. Biotechnol. Bioeng. 2010;107: 393–401. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Summary The Rotating-Wall Vessel (RWV) was used to culture chondrocytes for 36 d to observe the influence of low-shear and quiescent culture conditions allowing three-dimensional freedom on growth, differentiation, and extracellular matrix formation. Chondrocytes were freshly isolated from bovine cartilage and placed into the RWV with Cytodex-3 microcarriers. Nonadherent petri dishes were initiated with microcarriers as representative of standard culture conditions. In the RWV, large three-dimensional aggregates (5–7 mm) were formed in suspension. In addition, a large sheet of matrix adhered to the oxygenator core and vessel endcaps. Petri dish culture resulted in the formation of sheets of chondrocytes with no matrix production. Immunocytochemical analyses on histologic sections of tissue obtained from the RWV and the petri dish controls were performed with antibodies against fibronectin, collagen II, chondroitin-4-sulfate, chondroitin-6-sulfate, and vimentin. Results demonstrated increased signal in the RWV material while the petri dishes demonstrated a slight decrease in signal. In addition, differentiated chondrocytes were observed in sections of RWV material through 36 d, while few were observed in the sections of petri dish material. These results indicate that the unique conditions provided by the RWV afford access to cellular processes that signify the initiation of differentiation as well as production of normal matrix material.  相似文献   

20.
Chick embryo sternal chondrocytes from the caudal and cephalic regions were cultured within type I collagen gels and type I collagen/proteoglycan aggregate composite gels in normal serum. Caudal region chondrocytes were also cultured within type I collagen gels in the presence of fibronectindepleted serum. There was a marked stimulation of type X collagen synthesis by the caudal region chondrocytes after 9 days in the presence of fibronectin-depleted serum and after 14 days in the presence of proteoglycan aggregate. These results provide evidence for the ability of chondrocytes from a zone of permanent cartilage to synthesise type X collagen and for the involvement of extracellular matrix components in the control of type X collagen gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号