首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基因芯片与植物基因差异表达分析   总被引:5,自引:0,他引:5  
李同祥  王进科 《植物研究》2002,22(3):310-313
基因芯片为研究植物不同个体或物种之间以及同一个体在不同生长发育阶段、正常和疾病状态下基因表达的差异、某一性状多基因的协同作用,寻找和定位新的目的基因等方面带来了革命性的变革。与传统研究基因差异表达的方法相比,它具有微型化、用材少、快速、准确、灵敏度能高基、在因同等一研究方面已取得了显著的成绩,如拟南芥、酵母、水稻等。  相似文献   

3.
Yi Y  Mirosevich J  Shyr Y  Matusik R  George AL 《Genomics》2005,85(3):401-412
Microarray technology can be used to assess simultaneously global changes in expression of mRNA or genomic DNA copy number among thousands of genes in different biological states. In many cases, it is desirable to determine if altered patterns of gene expression correlate with chromosomal abnormalities or assess expression of genes that are contiguous in the genome. We describe a method, differential gene locus mapping (DIGMAP), which aligns the known chromosomal location of a gene to its expression value deduced by microarray analysis. The method partitions microarray data into subsets by chromosomal location for each gene interrogated by an array. Microarray data in an individual subset can then be clustered by physical location of genes at a subchromosomal level based upon ordered alignment in genome sequence. A graphical display is generated by representing each genomic locus with a colored cell that quantitatively reflects its differential expression value. The clustered patterns can be viewed and compared based on their expression signatures as defined by differential values between control and experimental samples. In this study, DIGMAP was tested using previously published studies of breast cancer analyzed by comparative genomic hybridization (CGH) and prostate cancer gene expression profiles assessed by cDNA microarray experiments. Analysis of the breast cancer CGH data demonstrated the ability of DIGMAP to deduce gene amplifications and deletions. Application of the DIGMAP method to the prostate data revealed several carcinoma-related loci, including one at 16q13 with marked differential expression encompassing 19 known genes including 9 encoding metallothionein proteins. We conclude that DIGMAP is a powerful computational tool enabling the coupled analysis of microarray data with genome location.  相似文献   

4.
5.

Background

Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study.

Results

Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this “gold-standard” comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues.

Conclusions

Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-649) contains supplementary material, which is available to authorized users.  相似文献   

6.
Combining multiple microarrays in the presence of controlling variables   总被引:2,自引:0,他引:2  
MOTIVATION: Microarray technology enables the monitoring of expression levels for thousands of genes simultaneously. When the magnitude of the experiment increases, it becomes common to use the same type of microarrays from different laboratories or hospitals. Thus, it is important to analyze microarray data together to derive a combined conclusion after accounting for the differences. One of the main objectives of the microarray experiment is to identify differentially expressed genes among the different experimental groups. The analysis of variance (ANOVA) model has been commonly used to detect differentially expressed genes after accounting for the sources of variation commonly observed in the microarray experiment. RESULTS: We extended the usual ANOVA model to account for an additional variability resulting from many confounding variables such as the effect of different hospitals. The proposed model is a two-stage ANOVA model. The first stage is the adjustment for the effects of no interests. The second stage is the detection of differentially expressed genes among the experimental groups using the residuals obtained from the first stage. Based on these residuals, we propose a permutation test to detect the differentially expressed genes. The proposed model is illustrated using the data from 133 microarrays collected at three different hospitals. The proposed approach is more flexible to use, and it is easier to accommodate the individual covariates in this model than using the meta-analysis approach. AVAILABILITY: A set of programs written in R will be electronically sent upon request.  相似文献   

7.

Background

With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods.

Results

Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled.

Conclusion

The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets.  相似文献   

8.
9.
Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.  相似文献   

10.
MOTIVATION: A common objective of microarray experiments is the detection of differential gene expression between samples obtained under different conditions. The task of identifying differentially expressed genes consists of two aspects: ranking and selection. Numerous statistics have been proposed to rank genes in order of evidence for differential expression. However, no one statistic is universally optimal and there is seldom any basis or guidance that can direct toward a particular statistic of choice. RESULTS: Our new approach, which addresses both ranking and selection of differentially expressed genes, integrates differing statistics via a distance synthesis scheme. Using a set of (Affymetrix) spike-in datasets, in which differentially expressed genes are known, we demonstrate that our method compares favorably with the best individual statistics, while achieving robustness properties lacked by the individual statistics. We further evaluate performance on one other microarray study.  相似文献   

11.
Time course experiments with microarrays have begun to provide a glimpse into the dynamic behavior of gene expression. In a typical experiment, scientists use microarrays to measure the abundance of mRNA at discrete time points after the onset of a stimulus. Recently, there has been much work on using these data to infer causal regulatory networks that model how genes influence each other. However, microarray studies typically have slow sampling rates that can lead to temporal aggregation of the signal. That is, each successive sampling point represents the sum of all signal changes since the previous sample. In this paper, we show that temporal aggregation can bias algorithms for causal inference and lead them to discover spurious relations that would not be found if the signal were sampled at a much faster rate. We discuss the implications of temporal aggregation on inference, the problems it creates, and potential directions for solutions.  相似文献   

12.

Background  

In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multiple experiments, increase statistical power, and achieve more reliable gene selection. The meta analysis of cancer microarray data is challenging because of the high dimensionality of gene expressions and the differences in experimental settings amongst different experiments.  相似文献   

13.
14.
MOTIVATION: DNA microarray data analysis has been used previously to identify marker genes which discriminate cancer from normal samples. However, due to the limited sample size of each study, there are few common markers among different studies of the same cancer. With the rapid accumulation of microarray data, it is of great interest to integrate inter-study microarray data to increase sample size, which could lead to the discovery of more reliable markers. RESULTS: We present a novel, simple method of integrating different microarray datasets to identify marker genes and apply the method to prostate cancer datasets. In this study, by applying a new statistical method, referred to as the top-scoring pair (TSP) classifier, we have identified a pair of robust marker genes (HPN and STAT6) by integrating microarray datasets from three different prostate cancer studies. Cross-platform validation shows that the TSP classifier built from the marker gene pair, which simply compares relative expression values, achieves high accuracy, sensitivity and specificity on independent datasets generated using various array platforms. Our findings suggest a new model for the discovery of marker genes from accumulated microarray data and demonstrate how the great wealth of microarray data can be exploited to increase the power of statistical analysis. CONTACT: leixu@jhu.edu.  相似文献   

15.
Microarrays have great potential for the study of developmental biology. As a model system Xenopus is well suited for making the most of this potential. However, Xenopus laevis has undergone a genome wide duplication meaning that most genes are represented by two paralogues. This causes a number of problems. Most importantly the presence of duplicated genes mean that a X. laevis microarray will have less or even half the coverage of a similar sized microarray from the closely related but diploid frog Xenopus tropicalis. However, to date, X. laevis is the most commonly used amphibian system for experimental embryology. Therefore, we have tested if a microarray based on sequences from X. tropicalis will work across species using RNA from X. laevis. We produced a pilot oligonucleotide microarray based on sequences from X. tropicalis. The microarray was used to identify genes whose expression levels changed during early X. tropicalis development. The same assay was then carried out using RNA from X. laevis. The cross species experiments gave similar results to those using X. tropicalis RNA. This was true at the whole microarray level and for individual genes, with most genes giving similar results using RNA from X. laevis and X. tropicalis. Furthermore, the overlap in genes identified between a X. laevis and a X. tropicalis set of experiments was only 12% less than the overlap between two sets of X. tropicalis experiments. Therefore researchers can work with X. laevis and still make use of the advantages offered by X. tropicalis microarrays.  相似文献   

16.
The comparison of gene expression profiles among DNA microarray experiments enables the identification of unknown relationships among experiments to uncover the underlying biological relationships. Despite the ongoing accumulation of data in public databases, detecting biological correlations among gene expression profiles from multiple laboratories on a large scale remains difficult. Here, we applied a module (sets of genes working in the same biological action)-based correlation analysis in combination with a network analysis to Arabidopsis data and developed a 'module-based correlation network' (MCN) which represents relationships among DNA microarray experiments on a large scale. We developed a Web-based data analysis tool, 'AtCAST' (Arabidopsis thaliana: DNA Microarray Correlation Analysis Tool), which enables browsing of an MCN or mining of users' microarray data by mapping the data into an MCN. AtCAST can help researchers to find novel connections among DNA microarray experiments, which in turn will help to build new hypotheses to uncover physiological mechanisms or gene functions in Arabidopsis.  相似文献   

17.
高通量的基因型分析和芯片技术的发展使人们能够进一步研究哪些遗传差异最终影响基因的表达。通过表达数量性状座位(eQTL)作图方法可对基因表达水平的遗传基础进行解析。与传统的QTL分析方法一样, eQTL的主要目标是鉴别表达性状座位所在的染色体区域。但由于表达谱数据成千上万, 而传统的QTL分析方法最多分析几十个性状, 因此需要考虑这类实验设计的特点以及统计分析方法。本文详细介绍了eQTL定位过程及其研究方法, 重点从个体选择、基因芯片实验设计、基因表达数据的获得与标准化、作图方法及结果分析等方面进行了综述, 指出了当前eQTL研究存在的问题和局限性。最后介绍了eQTL研究在估计基因表达遗传率、挖掘候选基因、构建基因调控网络、理解基因间及基因与环境的互作的应用进展。  相似文献   

18.
Extensive research on molecular genetics in recent decades has provided a wealth of information regarding the underlying mechanisms of primary immunodeficiency diseases. The microarray technology has made its entry into the molecular biology research area and hereby enabled signature expression profiling of whole species genomes. Perhaps no other methodological approach has transformed molecular biology more in recent years than the use of microarrays. Microarray technology has led the way from studies of the individual biological functions of a few related genes, proteins or, at best, pathways towards more global investigations of cellular activity. The development of this technology immediately yielded new and interesting information, and has produced more data than can be currently dealt with. It has also helped to realize that even a 'horizontally exhaustive' molecular analysis is insufficient. Applications of this tool in primary immunodeficiency studies have generated new information, which has led to a better understanding of the underlying basic biology of the diseases. Also, the technology has been used as an exploratory tool to disease genes in immunodeficiency diseases of unknown cause as in the case of the CD3Delta-chain and the MAPBPIP deficiency. For X-linked agammaglobulinemia, the technique has provided better understanding of the genes influenced by Btk. There is considerable hope that the microarray technology will lead to a better understanding of disease processes and the molecular phenotypes obtained from microarray experiments may represent a new tool for diagnosis of the disease.  相似文献   

19.
The detection of genes that show similar profiles under different experimental conditions is often an initial step in inferring the biological significance of such genes. Visualization tools are used to identify genes with similar profiles in microarray studies. Given the large number of genes recorded in microarray experiments, gene expression data are generally displayed on a low dimensional plot, based on linear methods. However, microarray data show nonlinearity, due to high-order terms of interaction between genes, so alternative approaches, such as kernel methods, may be more appropriate. We introduce a technique that combines kernel principal component analysis (KPCA) and Biplot to visualize gene expression profiles. Our approach relies on the singular value decomposition of the input matrix and incorporates an additional step that involves KPCA. The main properties of our method are the extraction of nonlinear features and the preservation of the input variables (genes) in the output display. We apply this algorithm to colon tumor, leukemia and lymphoma datasets. Our approach reveals the underlying structure of the gene expression profiles and provides a more intuitive understanding of the gene and sample association.  相似文献   

20.
MOTIVATION: Many biomedical experiments are carried out by pooling individual biological samples. However, pooling samples can potentially hide biological variance and give false confidence concerning the data significance. In the context of microarray experiments for detecting differentially expressed genes, recent publications have addressed the problem of the efficiency of sample pooling, and some approximate formulas were provided for the power and sample size calculations. It is desirable to have exact formulas for these calculations and have the approximate results checked against the exact ones. We show that the difference between the approximate and the exact results can be large. RESULTS: In this study, we have characterized quantitatively the effect of pooling samples on the efficiency of microarray experiments for the detection of differential gene expression between two classes. We present exact formulas for calculating the power of microarray experimental designs involving sample pooling and technical replications. The formulas can be used to determine the total number of arrays and biological subjects required in an experiment to achieve the desired power at a given significance level. The conditions under which pooled design becomes preferable to non-pooled design can then be derived given the unit cost associated with a microarray and that with a biological subject. This paper thus serves to provide guidance on sample pooling and cost-effectiveness. The formulation in this paper is outlined in the context of performing microarray comparative studies, but its applicability is not limited to microarray experiments. It is also applicable to a wide range of biomedical comparative studies where sample pooling may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号