首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) results from Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through Ca(2+)-permeable ion channels and is crucial for initiating intestinal epithelial restitution to reseal superficial wounds after mucosal injury. Capacitative Ca(2+) entry (CCE) induced by Ca(2+) store depletion represents a major Ca(2+) influx mechanism, but the exact molecular components constituting this process remain elusive. This study determined whether canonical transient receptor potential (TRPC)1 served as a candidate protein for Ca(2+)-permeable channels mediating CCE in intestinal epithelial cells and played an important role in early epithelial restitution. Normal intestinal epithelial cells (the IEC-6 cell line) expressed TRPC1 and TPRC5 and displayed typical records of whole cell store-operated Ca(2+) currents and CCE generated by Ca(2+) influx after depletion of intracellular stores. Induced TRPC1 expression by stable transfection with the TRPC1 gene increased CCE and enhanced cell migration during restitution. Differentiated IEC-Cdx2L1 cells induced by forced expression of the Cdx2 gene highly expressed endogenous TRPC1 and TRPC5 and exhibited increased CCE and cell migration. Inhibition of TRPC1 expression by small interfering RNA specially targeting TRPC1 not only reduced CCE but also inhibited cell migration after wounding. These findings strongly suggest that TRPC1 functions as store-operated Ca(2+) channels and plays a critical role in intestinal epithelial restitution by regulating CCE and intracellular [Ca(2+)](cyt).  相似文献   

2.
3.
The calcium-sensing receptor (CaR) is an allosteric protein that responds to extracellular Ca(2+) ([Ca(2+)](o)) and aromatic amino acids with the production of different patterns of oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](o) stimulates phospholipase C-mediated production of inositol 1,4,5-trisphosphate and causes sinusoidal oscillations in [Ca(2+)](i). Conversely, aromatic amino acid-induced CaR activation does not stimulate phospholipase C but engages an unidentified signaling mechanism that promotes transient oscillations in [Ca(2+)](i). We show here that the [Ca(2+)](i) oscillations stimulated by aromatic amino acids were selectively abolished by TRPC1 down-regulation using either a pool of small inhibitory RNAs (siRNAs) or two different individual siRNAs that targeted different coding regions of TRPC1. Furthermore, [Ca(2+)](i) oscillations stimulated by aromatic amino acids were also abolished by inhibition of TRPC1 function with an antibody that binds the pore region of the channel. We also show that aromatic amino acid-stimulated [Ca(2+)](i) oscillations can be prevented by protein kinase C (PKC) inhibitors or siRNA-mediated PKCalpha down-regulation and impaired by either calmodulin antagonists or by the expression of a dominant-negative calmodulin mutant. We propose a model for the generation of CaR-mediated transient [Ca(2+)](i) oscillations that integrates its stimulation by aromatic amino acids with TRPC1 regulation by PKC and calmodulin.  相似文献   

4.
TRPC1 and TRPC5 form a novel cation channel in mammalian brain   总被引:43,自引:0,他引:43  
TRP proteins are cation channels responding to receptor-dependent activation of phospholipase C. Mammalian (TRPC) channels can form hetero-oligomeric channels in vitro, but native TRPC channel complexes have not been identified to date. We demonstrate here that TRPC1 and TRPC5 are subunits of a heteromeric neuronal channel. Both TRPC proteins have overlapping distributions in the hippocampus. Coexpression of TRPC1 and TRPC5 in HEK293 cells resulted in a novel nonselective cation channel with a voltage dependence similar to NMDA receptor channels, but unlike that of any reported TRPC channel. TRPC1/TRPC5 heteromers were activated by G(q)-coupled receptors but not by depletion of intracellular Ca(2+) stores. In contrast to the more common view of the TRP family as comprising store-operated channels, we propose that many TRPC heteromers form diverse receptor-regulated nonselective cation channels in the mammalian brain.  相似文献   

5.
Potentiation of TRPC5 by protons   总被引:2,自引:0,他引:2  
Mammalian members of the classical transient receptor potential channel subfamily (TRPC) are Ca(2+)-permeable cation channels involved in receptor-mediated increases in intracellular Ca(2+). TRPC4 and TRPC5 form a group within the TRPC subfamily and are activated in a phospholipase C-dependent manner by an unidentified messenger. Unlike most other Ca(2+)-permeable channels, TRPC4 and -5 are potentiated by micromolar concentrations of La(3+) and Gd(3+). This effect results from an action of the cations at two glutamate residues accessible from the extracellular solution. Here, we show that TRPC4 and -5 respond to changes in extracellular pH. Lowering the pH increased both G protein-activated and spontaneous TRPC5 currents. Both effects were already observed with small reductions in pH (from 7.4 to 7.0) and increased up to pH 6.5. TRPC4 was also potentiated by decreases in pH, whereas TRPC6 was only inhibited, with a pIC(50) of 5.7. Mutation of the glutamate residues responsible for lanthanoid sensitivity of TRPC5 (E543Q and E595Q) modified the potentiation of TRPC5 by acid. Further evidence for a similarity in the actions of lanthanoids and H(+) on TRPC5 is the reduction in single channel conductance and dramatic increase in channel open probability in the presence of either H(+) or Gd(3+) that leads to larger integral currents. In conclusion, the high sensitivity of TRPC5 to H(+) indicates that, in addition to regulation by phospholipase C and other factors, the channel may act as a sensor of pH that links decreases in extracellular pH to Ca(2+) entry and depolarization.  相似文献   

6.
Mammalian transient receptor potential channels (TRPCs) form a family of Ca(2+)-permeable cation channels currently consisting of seven members, TRPC1-TRPC7. These channels have been proposed to be molecular correlates for capacitative Ca(2+) entry channels. There are only a few studies on the regulation and properties of the subfamily consisting of TRPC4 and TRPC5, and there are contradictory reports concerning the possible role of intracellular Ca(2+) store depletion in channel activation. We therefore investigated the regulatory and biophysical properties of murine TRPC4 and TRPC5 (mTRPC4/5) heterologously expressed in human embryonic kidney cells. Activation of G(q/11)-coupled receptors or receptor tyrosine kinases induced Mn(2+) entry in fura-2-loaded mTRPC4/5-expressing cells. Accordingly, in whole-cell recordings, stimulation of G(q/11)-coupled receptors evoked large, nonselective cation currents, an effect mimicked by infusion of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS). However, depletion of intracellular Ca(2+) stores failed to activate mTRPC4/5. In inside-out patches, single channels with conductances of 42 and 66 picosiemens at -60 mV for mTRPC4 and mTRPC5, respectively, were stimulated by GTPgammaS in a membrane-confined manner. Thus, mTRPC4 and mTRPC5 form nonselective cation channels that integrate signaling pathways from G-protein-coupled receptors and receptor tyrosine kinases independently of store depletion. Furthermore, the biophysical properties of mTRPC4/5 are inconsistent with those of I(CRAC), the most extensively characterized store-operated current.  相似文献   

7.
Ca-sensing receptor (CaSR), a member of the G protein-coupled receptor family, regulates the synthesis of parathyroid hormone in response to changes in serum Ca(2+) concentrations. The functions of CaSR in human vascular smooth muscle cells are largely unknown. Here we sought to study CaSR activation and the underlying molecular mechanisms in human aortic smooth muscle cells (HASMC). Extracellular Ca(2+) ([Ca(2+)](o)) dose-dependently increased free cytosolic Ca(2+) ([Ca(2+)](cyt)) in HASMC, with a half-maximal response (EC(50)) of 0.52 mM and a Hill coefficient of 5.50. CaSR was expressed in HASMC, and the [Ca(2+)](o)-induced [Ca(2+)](cyt) rise was abolished by dominant negative mutants of CaSR. The CaSR-mediated increase in [Ca(2+)](cyt) was also significantly inhibited by pertussis toxin, the phospholipase C inhibitor U-73122, or the general protein kinase C (PKC) inhibitor chelerythrine, but not by the conventional PKC inhibitor, G?6976. Depletion of membrane cholesterol by pretreatment with methyl-β-cyclodextrin markedly decreased CaSR-induced increase in [Ca(2+)](cyt). Blockade of TRPC channels with 2-aminoethoxydiphenyl borate, SKF-96365, or La(3) significantly inhibited [Ca(2+)](o) entry, whereas activation of TRPC6 channels with flufenamic acid potentiated [Ca(2+)](o) entry. Neither cyclopiazonic acid nor caffeine or ionomycin had any effect on [Ca(2+)](cyt) in [Ca(2+)](o)-free solutions. TRPC6 and PKCε mRNA and proteins were detected in HASMC, and [Ca(2+)](o) induced PKCε phosphorylation, which could be prevented by chelerythrine. Our data suggest that CaSR activation mediates [Ca(2+)](o) entry, likely through TRPC6-encoded receptor-operated channels that are regulated by a PLC/PKCε cascade. Our study therefore provides evidence not only for functional expression of CaSR, but also for a novel pathway whereby it regulates [Ca(2+)](o) entry in HASMC.  相似文献   

8.
Activation of G(q)-protein-coupled receptors, including the alpha(1A)-adrenoceptor (alpha(1A)-AR), causes a sustained Ca(2+) influx via receptor-operated Ca(2+) (ROC) channels, following the transient release of intracellular Ca(2+). Transient receptor potential canonical (TRPC) channel is one of the candidate proteins constituting the ROC channels, but the precise mechanism linking receptor activation to increased influx of Ca(2+) via TRPCs is not yet fully understood. We identified Snapin as a protein interacting with the C terminus of the alpha(1A)-AR. In receptor-expressing PC12 cells, co-transfection of Snapin augmented alpha(1A)-AR-stimulated sustained increases in intracellular Ca(2+) ([Ca(2+)](i)) via ROC channels. By altering the Snapin binding C-terminal domain of the alpha(1A)-AR or by reducing cellular Snapin with short interfering RNA, the sustained increase in [Ca(2+)](i) in Snapin-alpha(1A)-AR co-expressing PC12 cells was attenuated. Snapin co-immunoprecipitated with TRPC6 and alpha(1A)-AR, and these interactions were augmented upon alpha(1A)-AR activation, increasing the recruitment of TRPC6 to the cell surface. Our data suggest a new receptor-operated signaling mechanism where Snapin links the alpha(1A)-AR to TRPC6, augmenting Ca(2+) influx via ROC channels.  相似文献   

9.
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC.  相似文献   

10.
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 μm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 μm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.  相似文献   

11.
Ca(2+) influx by store-operated Ca(2+) channels is a key component of the receptor-evoked Ca(2+) signal. In all cells examined, transient receptor potential canonical (TRPC) channels mediate a significant portion of the receptor-stimulated Ca(2+) influx. Recent studies have revealed how STIM1 activates TRPC1 in response to store depletion; however, the role of STIM1 in TRPC channel activation by receptor stimulation is not fully understood. Here, we established mutants of TRPC channels that could not be activated by STIM1 but were activated by the "charge-swap" mutant STIM1(K684E,K685E). Significantly, WT but not mutant TRPC channels were inhibited by scavenging STIM1 with Orai1(R91W), indicating the STIM1 dependence and independence of WT and mutant TRPC channels, respectively. Importantly, mutant TRPC channels were robustly activated by receptor stimulation. Moreover, STIM1 and STIM1(K684E,K685E) reciprocally affected receptor-activated WT and mutant TRPC channels. Together, these findings indicate that TRPC channels can function as STIM1-dependent and STIM1-independent channels, which increases the versatility of TRPC channel function and their role in receptor-stimulated Ca(2+) influx.  相似文献   

12.
13.
Canonical transient receptor potential (TRPC) channels are opened by classical signal transduction events initiated by receptor activation or depletion of intracellular calcium stores. Here, we report a novel mechanism for opening TRPC channels in which TRPC6 activation initiates a cascade resulting in TRPC5 translocation. When endothelial cells (ECs) are incubated in lysophosphatidylcholine (lysoPC), rapid translocation of TRPC6 initiates calcium influx that results in externalization of TRPC5. Activation of this TRPC6-5 cascade causes a prolonged increase in intracellular calcium concentration ([Ca(2+)](i)) that inhibits EC movement. When TRPC5 is down-regulated with siRNA, the lysoPC-induced rise in [Ca(2+)](i) is shortened and the inhibition of EC migration is lessened. When TRPC6 is down-regulated or EC from TRPC6(-/-) mice are studied, lysoPC has minimal effect on [Ca(2+)](i) and EC migration. In addition, TRPC5 is not externalized in response to lysoPC, supporting the dependence of TRPC5 translocation on the opening of TRPC6 channels. Activation of this novel TRPC channel cascade by lysoPC, resulting in the inhibition of EC migration, could adversely impact on EC healing in atherosclerotic arteries where lysoPC is abundant.  相似文献   

14.
Mammalian members of the classical transient receptor potential channel (TRPC) subfamily (TRPC1-7) are Ca(2+)-permeable cation channels involved in receptor-mediated increases in intracellular Ca(2+). Unlike most other TRP-related channels, which are inhibited by La(3+) and Gd(3+), currents through TRPC4 and TRPC5 are potentiated by La(3+). Because these differential effects of lanthanides on TRPC subtypes may be useful for clarifying the role of different TRPCs in native tissues, we characterized the potentiating effect in detail and localized the molecular determinants of potentiation by mutagenesis. Whole cell currents through TRPC5 were reversibly potentiated by micromolar concentrations of La(3+) or Gd(3+), whereas millimolar concentrations were inhibitory. By comparison, TRPC6 was blocked to a similar extent by La(3+) or Gd(3+) at micromolar concentrations and showed no potentiation. Dual effects of lanthanides on TRPC5 were also observed in outside-out patches. Even at micromolar concentrations, the single channel conductance was reduced by La(3+), but reduction in conductance was accompanied by a dramatic increase in channel open probability, leading to larger integral currents. Neutralization of the negatively charged amino acids Glu(543) and Glu(595)/Glu(598), situated close to the extracellular mouth of the channel pore, resulted in a loss of potentiation, and, for Glu(595)/Glu(598) in a modification of channel inhibition. We conclude that in the micromolar range, the lanthanide ions La(3+) and Gd(3+) have opposite effects on whole cell currents through TRPC5 and TRPC6 channels. The potentiation of TRPC4 and TRPC5 by micromolar La(3+) at extracellular sites close to the pore mouth is a promising tool for identifying the involvement of these isoforms in receptor-operated cation conductances of native cells.  相似文献   

15.
Full-length transient receptor potential (TRP) cation channel TRPC4alpha and shorter TRPC4beta lacking 84 amino acids in the cytosolic C terminus are expressed in smooth muscle and endothelial cells where they regulate membrane potential and Ca(2+) influx. In common with other "classical" TRPCs, TRPC4 is activated by G(q)/phospholipase C-coupled receptors, but the underlying mechanism remains elusive. Little is also known about any isoform-specific channel regulation. Here we show that TRPC4alpha but not TRPC4beta was strongly inhibited by intracellularly applied phosphatidylinositol 4,5-bisphosphate (PIP(2)). In contrast, several other phosphoinositides (PI), including PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), had no effect or even potentiated TRPC4alpha indicating that PIP(2) inhibits TRPC4alpha in a highly selective manner. We show that PIP(2) binds to the C terminus of TRPC4alpha but not that of TRPC4beta in vitro. Its inhibitory action was dependent on the association of TRPC4alpha with actin cytoskeleton as it was prevented by cytochalasin D treatment or by the deletion of the C-terminal PDZ-binding motif (Thr-Thr-Arg-Leu) that links TRPC4 to F-actin through the sodium-hydrogen exchanger regulatory factor and ezrin. PIP(2) breakdown appears to be a required step in TRPC4alpha channel activation as PIP(2) depletion alone was insufficient for channel opening, which additionally required Ca(2+) and pertussis toxin-sensitive G(i/o) proteins. Thus, TRPC4 channels integrate a variety of G-protein-dependent stimuli, including a PIP(2)/cytoskeleton dependence reminiscent of the TRPC4-like muscarinic agonist-activated cation channels in ileal myocytes.  相似文献   

16.
Both protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) are involved in mediating vascular smooth muscle contraction. We tested the hypotheses that in addition to PKC activation of ERK1/2, by negative feedback ERKs modulate PKC-induced contraction, and that their interactions modulate both thick and thin myofilament pathways. In ovine middle cerebral arteries (MCA), we measured isometric tension and intracellular free calcium concentration ([Ca(2+)](i)) responses to PKC stimulation [phorbol 12,13-dibutyrate (PDBu), 3 x 10(-6) M] in the absence or presence of ERK1/2 inhibition (U-0126, 10(-5) M). After PDBu +/- ERK1/2 inhibition, we also examined by Western immunoblot the levels of total and phosphorylated ERK1/2, caldesmon(Ser789), myosin light chain(20) (MLC(20)), and CPI-17. PDBu induced significant increase in tension in the absence of increased [Ca(2+)](i). PDBu also increased phosphorylated ERK1/2 levels, a response blocked by U-0126. In turn, U-0126 augmented PDBu-induced contractions. PDBu also was associated with significant increases in phosphorylated caldesmon(Ser789) and MLC(20) levels, each of which peaked at 5 to 10 min. PDBu also increased phosphorylated CPI-17 levels, which peaked at 2 to 3 min. Rho kinase inhibition (Y-27632, 3 x 10(-7) M) did not alter PDBu-induced contraction. These results support the idea that PKC activation can increase CPI-17 phosphorylation to decrease myosin light chain phosphatase activity. In turn, this increases MLC(20) phosphorylation in the thick filament pathway and increases Ca(2+) sensitivity. In addition, ERK1/2-dependent phosphorylation of caldesmon(Ser789) was not necessary for PDBu-induced contraction and appears not to be involved in the reversal of caldesmon's inhibitory effect on actin-myosin ATPase.  相似文献   

17.
18.
Ca(+) signaling plays a crucial role in control of cell cycle progression, but the understanding of the dynamics of Ca(2+) influx and release of Ca(2+) from intracellular stores during the cell cycle is far from complete. The aim of the present study was to investigate the role of the free extracellular Ca(2+) concentration ([Ca(2+)](o)) in cell proliferation, the pattern of changes in the free intracellular Ca(2+) concentration ([Ca(2+)](i)) during cell cycle progression, and the role of the transient receptor potential (TRP)C1 in these changes as well as in cell cycle progression and cell volume regulation. In Ehrlich Lettré Ascites (ELA) cells, [Ca(2+)](i) decreased significantly, and the thapsigargin-releasable Ca(2+) pool in the intracellular stores increased in G(1) as compared with G(0). Store-depletion-operated Ca(2+) entry (SOCE) and TRPC1 protein expression level were both higher in G(1) than in G(0) and S phase, in parallel with a more effective volume regulation after swelling [regulatory volume decrease (RVD)] in G(1) as compared with S phase. Furthermore, reduction of [Ca(2+)](o), as well as two unspecific SOCE inhibitors, 2-APB (2-aminoethyldiphenyl borinate) and SKF96365 (1-(β-[3-(4-methoxy-phenyl)propoxyl-4-methoxyphenethyl)1H-imidazole-hydrochloride), inhibited ELA cell proliferation. Finally, Madin-Darby canine kidney cells in which TRPC1 was stably silenced [TRPC1 knockdown (TRPC1-KD) MDCK] exhibited reduced SOCE, slower RVD, and reduced cell proliferation compared with mock controls. In conclusion, in ELA cells, SOCE and TRPC1 both seem to be upregulated in G(1) as compared with S phase, concomitant with an increased rate of RVD. Furthermore, TRPC1-KD MDCK cells exhibit decreased SOCE, decreased RVD, and decreased proliferation, suggesting that, at least in certain cell types, TRPC1 is regulated during cell cycle progression and is involved in SOCE, RVD, and cell proliferation.  相似文献   

19.
Multiple TRP channels are regulated by phosphoinositides (PIs). However, it is not known whether PIs bind directly to TRP channels. Furthermore, the mechanisms through which PIs regulate TRP channels are obscure. To analyze the role of PI/TRP interactions, we used a biochemical approach, focusing on TRPC6. TRPC6 bound directly to PIs, and with highest potency to phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). We found that PIP(3) binding disrupted the association of calmodulin (CaM) with TRPC6. We identified the PIP(3)-binding site and found that mutations that increased or decreased the affinity of the PIP(3)/TRPC6 interaction enhanced or reduced the TRPC6-dependent current, respectively. PI-mediated disruption of CaM binding appears to be a theme that applies to other TRP channels, such as TRPV1, as well as to the voltage-gated channels KCNQ1 and Ca(v)1.2. We propose that regulation of CaM binding by PIs provides a mode for integration of channel regulation by Ca(2+) and PIs.  相似文献   

20.
Tseng PH  Lin HP  Hu H  Wang C  Zhu MX  Chen CS 《Biochemistry》2004,43(37):11701-11708
We previously reported that phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), a lipid product of phosphoinositide 3-kinase (PI3K), induced Ca(2+) influx via a noncapacitative pathway in platelets, Jurkat T cells, and RBL-2H3 mast cells. The identity of this Ca(2+) influx system, however, remains unclear. Here, we investigate a potential link between PIP(3)-sensitive Ca(2+) entry and the canonical transient receptor potential (TRPC) channels by developing stable human embryonic kidney (HEK) 293 cell lines expressing TRPC1, TRPC3, TRPC5, and TRPC6. Two lines of evidence support TRPC6 as a putative target by which PIP(3) induces Ca(2+) influx. First, Fura-2 fluorometric Ca(2+) analysis shows the ability of PIP(3) to selectively stimulate [Ca(2+)](i) increase in TRPC6-expressing cells. Second, pull-down analysis indicates specific interactions between biotin-PIP(3) and TRPC6 protein. Our data indicate that PIP(3) activates store-independent Ca(2+) entry in TRPC6 cells via a nonselective cation channel. Although the activating effect of PIP(3) on TRPC6 is reminiscent to that of 1-oleoyl-2-acetyl-sn-glycerol, this activation is not attributable to the diacylglycerol substructure of PIP(3) since other phosphoinositides failed to trigger Ca(2+) responses. The PIP(3)-activated Ca(2+) entry is inhibited by known TRPC6 inhibitors such as Gd(3+) and SKF96365 and is independent of IP(3) production. Furthermore, we demonstrated that TRPC6 overexpression or antisense downregulation significantly alters the amplitude of PIP(3)- and anti-CD3-activated Ca(2+) responses in Jurkat T cells. Consequently, the link between TRPC6 and PIP(3)-mediated Ca(2+) entry provides a framework to account for an intimate relationship between PI3K and PLCgamma in initiating Ca(2+) response to agonist stimulation in T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号