首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N G Smith  L D Hurst 《Genetics》1999,153(3):1395-1402
Nonsynonymous substitutions in DNA cause amino acid substitutions while synonymous substitutions in DNA leave amino acids unchanged. The cause of the correlation between the substitution rates at nonsynonymous (K(A)) and synonymous (K(S)) sites in mammals is a contentious issue, and one that impacts on many aspects of molecular evolution. Here we use a large set of orthologous mammalian genes to investigate the causes of the K(A)-K(S) correlation in rodents. The strength of the K(A)-K(S) correlation exceeds the neutral theory expectation when substitution rates are estimated using algorithmic methods, but not when substitution rates are estimated by maximum likelihood. Irrespective of this methodological uncertainty the strength of the K(A)-K(S) correlation appears mostly due to tandem substitutions, an excess of which is generated by substitutional nonindependence. Doublet mutations cannot explain the excess of tandem synonymous-nonsynonymous substitutions, and substitution patterns indicate that selection on silent sites is the likely cause. We find no evidence for selection on codon usage. The nature of the relationship between synonymous divergence and base composition is unclear because we find a significant correlation if we use maximum-likelihood methods but not if we use algorithmic methods. Finally, we find that K(S) is reduced at the start of genes, which suggests that selection for RNA structure may affect silent sites in mammalian protein-coding genes.  相似文献   

2.
The complete nucleotide sequence of the mitochondrial (mt) genome was determined for three species of discoglossid frogs (Amphibia:Anura:Discoglossidae), representing three of the four recognized genera: Alytes obstetricans, Bombina orientalis, and Discoglossus galganoi. The organization and size of these newly determined mt genomes are similar to those previously reported for other vertebrates. Phylogenetic analyses (maximum likelihood, Bayesian inference, minimum evolution, and maximum parsimony) of mt protein-coding genes at the amino acid level were performed in combination with already published mt genome sequence data of three species of Neobatrachia, one of Pipoidea, and four of Caudata. Phylogenetic analyses based on the deduced amino acid sequences of all mt protein-coding genes arrived at the same topology. The monophyly of Discoglossidae is strongly supported. Within the Discoglossidae, Alytes is consistently recovered as sister group of Discoglossus, to the exclusion of Bombina. The three species representing Neobatrachia exhibited extremely long branches irrespective of the phylogenetic inference method used, and hence their relative position with respect to Discoglossidae and Xenopus may be artefactual due to a severe long branch attraction effect. To further investigate the phylogenetic intrarelationships of discoglossids, nucleotide sequences of four nuclear protein-coding genes (CXCR4, RAG1, RAG2, and Rhodopsin) with sequences available for the three discoglossid genera and Xenopus were retrieved from GenBank, and together with a concatenated nucleotide sequence data set containing all mt protein-coding genes except ND6 were subjected to separate and combined phylogenetic analyses. In all cases, a sister group relationship between Alytes and Discoglossus was recovered with high statistical support.  相似文献   

3.
An online computer system for the analysis of the molecular evolution modes of genes and proteins has been developed (SAMEM: ). SAMEM computations are based on the ratio of radical to conservative amino acid substitutions (K R /K C ), the rate of amino acid substitutions in the course of protein evolution (V P ), and statistical relationships between the evolutionary changes of all known amino acid properties and particular features of an organism. The system facilitates the interpretation of the results of K R /K C and V P analyses.  相似文献   

4.
Genes that have experienced accelerated evolutionary rates on the human lineage during recent evolution are candidates for involvement in human-specific adaptations. To determine the forces that cause increased evolutionary rates in certain genes, we analyzed alignments of 10,238 human genes to their orthologues in chimpanzee and macaque. Using a likelihood ratio test, we identified protein-coding sequences with an accelerated rate of base substitutions along the human lineage. Exons evolving at a fast rate in humans have a significant tendency to contain clusters of AT-to-GC (weak-to-strong) biased substitutions. This pattern is also observed in noncoding sequence flanking rapidly evolving exons. Accelerated exons occur in regions with elevated male recombination rates and exhibit an excess of nonsynonymous substitutions relative to the genomic average. We next analyzed genes with significantly elevated ratios of nonsynonymous to synonymous rates of base substitution (dN/dS) along the human lineage, and those with an excess of amino acid replacement substitutions relative to human polymorphism. These genes also show evidence of clusters of weak-to-strong biased substitutions. These findings indicate that a recombination-associated process, such as biased gene conversion (BGC), is driving fixation of GC alleles in the human genome. This process can lead to accelerated evolution in coding sequences and excess amino acid replacement substitutions, thereby generating significant results for tests of positive selection.  相似文献   

5.
The contribution of regulatory versus protein change to adaptive evolution has long been controversial. In principle, the rate and strength of adaptation within functional genetic elements can be quantified on the basis of an excess of nucleotide substitutions between species compared to the neutral expectation or from effects of recent substitutions on nucleotide diversity at linked sites. Here, we infer the nature of selective forces acting in proteins, their UTRs and conserved noncoding elements (CNEs) using genome-wide patterns of diversity in wild house mice and divergence to related species. By applying an extension of the McDonald-Kreitman test, we infer that adaptive substitutions are widespread in protein-coding genes, UTRs and CNEs, and we estimate that there are at least four times as many adaptive substitutions in CNEs and UTRs as in proteins. We observe pronounced reductions in mean diversity around nonsynonymous sites (whether or not they have experienced a recent substitution). This can be explained by selection on multiple, linked CNEs and exons. We also observe substantial dips in mean diversity (after controlling for divergence) around protein-coding exons and CNEs, which can also be explained by the combined effects of many linked exons and CNEs. A model of background selection (BGS) can adequately explain the reduction in mean diversity observed around CNEs. However, BGS fails to explain the wide reductions in mean diversity surrounding exons (encompassing ∼100 Kb, on average), implying that there is a substantial role for adaptation within exons or closely linked sites. The wide dips in diversity around exons, which are hard to explain by BGS, suggest that the fitness effects of adaptive amino acid substitutions could be substantially larger than substitutions in CNEs. We conclude that although there appear to be many more adaptive noncoding changes, substitutions in proteins may dominate phenotypic evolution.  相似文献   

6.
Phylogenetic analyses of first and second codon positions (DNA1 + 2 analysis) and amino acid sequences (protein analysis) are often thought to provide similar estimates of deep-level phylogeny. However, here we report a novel artifact influencing DNA level phylogenetic inference of protein-coding genes introduced by codon usage heterogeneity that causes significant incongruities between DNA1 + 2 and protein analyses. DNA1 + 2 analyses of plastid-encoded psbA genes (encoding of photosystem II D1 proteins) strongly suggest a relationship between haptophyte plastids and typical (peridinin-containing) dinoflagellate plastids. The psbA genes from haptophytes and a subset of the peridinin-type plastids display similar codon usage patterns for Leu, Ser, and Arg, which are each encoded by two separated codon sets that differ at first or first plus second codon positions. Our detailed analyses clearly indicate that these unusual preferences shared by haptophyte and some peridinin-type plastid genes are largely responsible for their strong affinity in DNA analyses. In particular, almost all of the support from DNA level analyses for the monophyly of haptophyte and peridinin-type plastids is lost when the codons corresponding to constant Leu, Ser, and Arg amino acids are excluded, suggesting that this signal comes from rapidly evolving synonymous substitutions, rather than from substitutions that result in amino acid changes. Indeed, protein maximum-likelihood analyses of concatenated PsaA and PsbA amino acid sequences indicate that, although 19' hexanoyloxyfucoxanthin-type (19' HNOF-type) plastids in dinoflagellates group with haptophyte plastids, peridinin-type plastids group weakly with those of stramenopiles. Consequently our results cast doubt on the single origin of peridinin-type and 19' HNOF-type plastids in dinoflagellates previously suggested on the basis of psaA and psbA concatenated gene phylogenetic analyses. We suggest that codon usage heterogeneity could be a more general problem for DNA level analyses of protein-coding genes, even when third codon positions are excluded.  相似文献   

7.
We study to what degree patterns of amino acid substitution vary between genes using two models of protein-coding gene evolution. The first divides the amino acids into groups, with one substitution rate for pairs of residues in the same group and a second for those in differing groups. Unlike previous applications of this model, the groups themselves are estimated from data by simulated annealing. The second model makes substitution rates a function of the physical and chemical similarity between two residues. Because we model the evolution of coding DNA sequences as opposed to protein sequences, artifacts arising from the differing numbers of nucleotide substitutions required to bring about various amino acid substitutions are avoided. Using 10 alignments of related sequences (five of orthologous genes and five gene families), we do find differences in substitution patterns. We also find that, although patterns of amino acid substitution vary temporally within the history of a gene, variation is not greater in paralogous than in orthologous genes. Improved understanding of such gene-specific variation in substitution patterns may have implications for applications such as sequence alignment and phylogenetic inference.  相似文献   

8.
We studied 10 protein-coding mitochondrial genes from 19 mammalian species to evaluate the effects of 10 amino acid properties on the evolution of the genetic code, the amino acid composition of proteins, and the pattern of nonsynonymous substitutions. The 10 amino acid properties studied are the chemical composition of the side chain, two polarity measures, hydropathy, isoelectric point, volume, aromaticity, aliphaticity, hydrogenation, and hydroxythiolation. The genetic code appears to have evolved toward minimizing polarity and hydropathy but not the other seven properties. This can be explained by our finding that the presumably primitive amino acids differed much only in polarity and hydropathy, but little in the other properties. Only the chemical composition (C) and isoelectric point (IE) appear to have affected the amino acid composition of the proteins studied, that is, these proteins tend to have more amino acids with typical C and IE values, so that nonsynonymous mutations tend to result in small differences in C and IE. All properties, except for hydroxythiolation, affect the rate of nonsynonymous substitution, with the observed amino acid changes having only small differences in these properties, relative to the spectrum of all possible nonsynonymous mutations. Received: 2 January 1998 / Accepted: 25 April 1998  相似文献   

9.
Differences in rates of nucleotide or amino acid substitutions among major groups of organisms are repeatedly found and well documented. A growing body of evidence suggests a link between the rate of neutral molecular change within populations and the evolution of species diversity. More than 98% of terrestrial fungi belong to the phyla Ascomycota or Basidiomycota. The former is considerably richer in number of species than the latter. We obtained DNA sequences of 21 protein-coding genes from the lichenized fungus Rhizoplaca chrysoleuca and used them together with sequences from GenBank for subsequent analyses. Three datasets were used to test rate discrepancies between Ascomycota and Basidiomycota and that within Ascomycota: (i) 13 taxa including 105 protein-coding genes, (ii) nine taxa including 21 protein-coding genes, and (iii) nuclear LSU rDNA of 299 fungal species. Based on analyses of the 105 protein-coding genes and nuclear LSU rDNA datasets, we found that the evolutionary rate was higher in Ascomycota than in Basidiomycota. The differences in substitution rates between Ascomycota and Basidiomycota were significant. Within Ascomycota, the species-rich Sordariomycetes has the fastest evolutionary rate, while Leotiomycetes has the slowest. Our results indicate that the main contribution to the higher substitution rates in Ascomycota does not come from mutualism, ecological conditions, sterility, metabolic rate or shorter generation time, but is possibly caused by the founder effect. This is another example of the correlation between species number and evolutionary rates, which is consistent with the hypothesis that the founder effect is responsible for accelerated substitution rates in diverse clades.  相似文献   

10.
Bussink AP  Speijer D  Aerts JM  Boot RG 《Genetics》2007,177(2):959-970
Family 18 of glycosyl hydrolases encompasses chitinases and so-called chi-lectins lacking enzymatic activity due to amino acid substitutions in their active site. Both types of proteins widely occur in mammals although these organisms lack endogenous chitin. Their physiological function(s) as well as evolutionary relationships are still largely enigmatic. An overview of all family members is presented and their relationships are described. Molecular phylogenetic analyses suggest that both active chitinases (chitotriosidase and AMCase) result from an early gene duplication event. Further duplication events, followed by mutations leading to loss of chitinase activity, allowed evolution of the chi-lectins. The homologous genes encoding chitinase(-like) proteins are clustered in two distinct loci that display a high degree of synteny among mammals. Despite the shared chromosomal location and high homology, individual genes have evolved independently. Orthologs are more closely related than paralogues, and calculated substitution rate ratios indicate that protein-coding sequences underwent purifying selection. Substantial gene specialization has occurred in time, allowing for tissue-specific expression of pH optimized chitinases and chi-lectins. Finally, several family 18 chitinase-like proteins are present only in certain lineages of mammals, exemplifying recent evolutionary events in the chitinase protein family.  相似文献   

11.
Natural selection operating at the amino acid sequence level can be detected by comparing the rates of synonymous (r(S)) and nonsynonymous (r(N)) nucleotide substitutions, where r(N)/r(S) (omega) > 1 and omega < 1 suggest positive and negative selection, respectively. The branch-site test has been developed for detecting positive selection operating at a group of amino acid sites for a pre-specified (foreground) branch of a phylogenetic tree by taking into account the heterogeneity of omega among sites and branches. Here the performance of the branch-site test was examined by computer simulation, with special reference to the false-positive rate when the divergence of the sequences analyzed was small. The false-positive rate was found to inflate when the assumptions made on the omega values for the foreground and other (background) branches in the branch-site test were violated. In addition, under a similar condition, false-positive results were often obtained even when Bonferroni correction was conducted and the false-discovery rate was controlled in a large-scale analysis. False-positive results were also obtained even when the number of nonsynonymous substitutions for the foreground branch was smaller than the minimum value required for detecting positive selection. The existence of a codon site with a possibility of occurrence of multiple nonsynonymous substitutions for the foreground branch often caused the branch-site test to falsely identify positive selection. In the re-analysis of orthologous trios of protein-coding genes from humans, chimpanzees, and macaques, most of the genes previously identified to be positively selected for the human or chimpanzee branch by the branch-site test contained such a codon site, suggesting a possibility that a significant fraction of these genes are false-positives.  相似文献   

12.
There are 17 to 20 actin genes in the genome of the cellular slime mold Dictyostelium discoideum. Genomic clones of 15 of the genes have been isolated. Extensive nucleotide sequence within the protein-coding regions has been determined, including the complete nucleotide sequence of four genes representing the three distinct evolutionary groups of Dictyostelium actin genes. All are similar to mammalian cytoplasmic actins at diagnostic amino acid positions, and there is generally less variability among Dictyostelium actin genes than among Drosophila actin genes. Two genes, Actins 3-sub 1 and 3-sub 2 differ substantially from all the rest in terms of replacement amino acid substitutions and probably encode actin-related proteins rather than bona fide actins. Each contains several amino acid substitutions that should alter the secondary structure of the resulting proteins, and Actin 3-sub 2 encodes four additional amino acids at the C terminus. This gene is as divergent from other Dictyostelium actin genes as is the yeast or a soybean actin gene. At present, evidence suggests that all 15 genes examined are expressed, except the previously identified Actin 2-sub 2. We suggest that Dictyostelium might maintain a high number of functional actin genes for the purpose of regulating the level of actin synthesis within narrow limits, rather than because most genes perform different functions.  相似文献   

13.
To research the adaptive evolution and coevolution of the rbcL gene in the genus Galdieria, 36 sequences were selected. The bioinformatics of proteins encoded by rbcL genes of Galdieria were analyzed, and phylogenetic trees were constructed by the maximum-likelihood method. Then, adaptive evolution and coevolution were analyzed. The phylogenetic tree showed that the inner groups were clustered into four branches, in which the sequences of Galdieria maxima were divided into two small branches, and the posterior probability of each branch is above 94.9%. Eleven reliable positive selection sites were detected in the branched-site model, indicating that the rbcL protein-coding gene of Galdieria underwent adaptive evolution to adapt to extreme environments. Site 269 F is located in the loop 6 domain, while sites 272 D and 273 W are located in the 6-helix structure. Many coevolution pairs were detected, which were closely related to the hydrophobic and molecular weight correlation values of amino acids. The results are helpful to research the evolution process of freshwater red algae, to explore the changes of its essential genes and protein functions to adapt to different environmental pressures, and to understand the close relationship between amino acids in proteins and the molecular mechanism of evolution.  相似文献   

14.
Miyazawa S 《PloS one》2011,6(12):e28892
BACKGROUND: A mechanistic codon substitution model, in which each codon substitution rate is proportional to the product of a codon mutation rate and the average fixation probability depending on the type of amino acid replacement, has advantages over nucleotide, amino acid, and empirical codon substitution models in evolutionary analysis of protein-coding sequences. It can approximate a wide range of codon substitution processes. If no selection pressure on amino acids is taken into account, it will become equivalent to a nucleotide substitution model. If mutation rates are assumed not to depend on the codon type, then it will become essentially equivalent to an amino acid substitution model. Mutation at the nucleotide level and selection at the amino acid level can be separately evaluated. RESULTS: The present scheme for single nucleotide mutations is equivalent to the general time-reversible model, but multiple nucleotide changes in infinitesimal time are allowed. Selective constraints on the respective types of amino acid replacements are tailored to each gene in a linear function of a given estimate of selective constraints. Their good estimates are those calculated by maximizing the respective likelihoods of empirical amino acid or codon substitution frequency matrices. Akaike and Bayesian information criteria indicate that the present model performs far better than the other substitution models for all five phylogenetic trees of highly-divergent to highly-homologous sequences of chloroplast, mitochondrial, and nuclear genes. It is also shown that multiple nucleotide changes in infinitesimal time are significant in long branches, although they may be caused by compensatory substitutions or other mechanisms. The variation of selective constraint over sites fits the datasets significantly better than variable mutation rates, except for 10 slow-evolving nuclear genes of 10 mammals. An critical finding for phylogenetic analysis is that assuming variable mutation rates over sites lead to the overestimation of branch lengths.  相似文献   

15.
Insertions and deletions of lengths not divisible by 3 in protein-coding sequences cause frameshifts that usually induce premature stop codons and may carry a high fitness cost. However, this cost can be partially offset by a second compensatory indel restoring the reading frame. The role of such pairs of compensatory frameshifting mutations (pCFMs) in evolution has not been studied systematically. Here, we use whole-genome alignments of protein-coding genes of 100 vertebrate species, and of 122 insect species, studying the prevalence of pCFMs in their divergence. We detect a total of 624 candidate pCFM genes; six of them pass stringent quality filtering, including three human genes: RAB36, ARHGAP6, and NCR3LG1. In some instances, amino acid substitutions closely predating or following pCFMs restored the biochemical similarity of the frameshifted segment to the ancestral amino acid sequence, possibly reducing or negating the fitness cost of the pCFM. Typically, however, the biochemical similarity of the frameshifted sequence to the ancestral one was not higher than the similarity of a random sequence of a protein-coding gene to its frameshifted version, indicating that pCFMs can uncover radically novel regions of protein space. In total, pCFMs represent an appreciable and previously overlooked source of novel variation in amino acid sequences.  相似文献   

16.
Codon-and amino acid-substitution models are widely used for the evolutionary analysis of protein-coding DNA sequences. Using codon models, the amounts of both nonsynonymous and synonymous DNA substitutions can be estimated. The ratio of these amounts represents the strength of selective pressure. Using amino acid models, the amount of nonsynonymous substitutions is estimated, but that of synonymous substitutions is ignored. Although amino acid models lose any information regarding synonymous substitutions, they explicitly incorporate the information for amino acid replacement, which is empirically derived from databases. It is often presumed that when the protein-coding sequences are highly divergent, synonymous substitutions might be saturated and the evolutionary analysis may be hampered by synonymous noise. However, there exists no quantitative procedure to verify whether synonymous substitutions can be ignored; therefore, amino acid models have been arbitrarily selected. In this study, we investigate the issue of a statistical comparison between codon-and amino acid-substitution models. For this purpose, we propose a new procedure to transform a 20-dimensional amino acid model to a 61-dimensional codon model. This transformation reveals that amino acid models belong to a subset of the codon models and enables us to test whether synonymous substitutions can be ignored by using the likelihood ratio. Our theoretical results and analyses of real data indicate that synonymous substitutions are very informative and substantially improve evolutionary inference, even when the sequences are highly divergent. Therefore, we note that amino acid models should be adopted only after carefully investigating and discarding the possibility that synonymous substitutions can reveal important evolutionary information.  相似文献   

17.
Chung C  Wu BN  Yang CC  Chang LS 《Biological chemistry》2002,383(9):1397-1406
Two novel proteins, BM8 and BM14, were isolated from Bungarus multicinctus (Taiwan banded krait) venom using the combination of chromatography on a SP-Sephadex C-25 column and a reverse-phase HPLC column. Both proteins contained 82 amino acid residues including 10 cysteine residues, but there were two amino acid substitutions at positions 37 and 38 (Glu37-Ala38 in BM8; Lys37-Lys38 in BM14). CD spectra and acrylamide quenching studies revealed that the gross conformation of BM8 and BM14 differed. In contrast to BM8, BM14 inhibited the binding of [3H]quinuclidinyl benzilate to the M2 muscarinic acetylcholine (mAchR) receptor subtype. Trinitrophenylation of Lys residues abolished the mAchR-binding activity of BM14, indicating that the Lys substitutions at positions 37 and 38 played a crucial role in the activity of BM14. The genomic DNA encoding the precursor of BM14 was amplified by PCR. The gene shared virtually identical structural organization with alpha-neurotoxin and cardiotoxin genes. The intron sequences of these genes shared a sequence identity up to 84%, but the protein-coding regions were highly variable. These results suggest that BM8, BM14, neurotoxins and cardiotoxins may have originated from a common ancestor, and the evolution of snake venom proteins shows a tendency to diversify their functions.  相似文献   

18.
Subramanian S  Kumar S 《Genetics》2004,168(1):373-381
Natural selection leaves its footprints on protein-coding sequences by modulating their silent and replacement evolutionary rates. In highly expressed genes in invertebrates, these footprints are seen in the higher codon usage bias and lower synonymous divergence. In mammals, the highly expressed genes have a shorter gene length in the genome and the breadth of expression is known to constrain the rate of protein evolution. Here we have examined how the rates of evolution of proteins encoded by the vertebrate genomes are modulated by the amount (intensity) of gene expression. To understand how natural selection operates on proteins that appear to have arisen in earlier and later phases of animal evolution, we have contrasted patterns of mouse proteins that have homologs in invertebrate and protist genomes (Precambrian genes) with those that do not have such detectable homologs (vertebrate-specific genes). We find that the intensity of gene expression relates inversely to the rate of protein sequence evolution on a genomic scale. The most highly expressed genes actually show the lowest total number of substitutions per polypeptide, consistent with cumulative effects of purifying selection on individual amino acid replacements. Precambrian genes exhibit a more pronounced difference in protein evolutionary rates (up to three times) between the genes with high and low expression levels as compared to the vertebrate-specific genes, which appears to be due to the narrower breadth of expression of the vertebrate-specific genes. These results provide insights into the differential relationship and effect of the increasing complexity of animal body form on evolutionary rates of proteins.  相似文献   

19.
Beta-catenin functions as a cytoskeletal linker protein in cadherin-mediated adhesion and as a signal mediator in wnt-signal transduction pathways. We use a novel integrative approach, combining evolutionary, genomic, and three-dimensional structural data to analyze and trace the structural and functional evolution of beta-catenin genes. This approach also enabled us to examine the effects of gene duplication on the structure and function of beta-catenin genes in Drosophila, C. elegans, and vertebrates. By sampling a large number of different taxa, we identified both ancestral and derived motifs and residues within the different regions of the beta-catenin proteins. Projecting amino acid substitutions onto the three- dimensional structure established for mouse beta-catenin, we identified specific domains that exhibit loss and gain of selective constraints during beta catenin evolution. Structural changes, changes in the amino acid substitution rate, and the appearance of novel functional domains in beta-catenin can be mapped to specific branches on the metazoan tree. Together, our analyses suggest that a single, beta-catenin gene fulfilled both adhesion and signaling functions in the last common ancestor of metazoans some 700 million years ago. In addition, gene duplications facilitated the evolution of beta-catenins with novel functions and allowed the evolution of multiple, single-function proteins (cell adhesion or wnt-signaling) from the ancestral, dual-function protein. Integrative methods such as those we have applied here, utilizing the 'natural experiments' present in animal diversity, can be employed to identify novel and shared functional motifs and residues in virtually any protein among the proteomes of model systems and humans.  相似文献   

20.
The proportion of amino acid substitutions driven by adaptive evolution can potentially be estimated from polymorphism and divergence data by an extension of the McDonald-Kreitman test. We have developed a maximum-likelihood method to do this and have applied our method to several data sets from three Drosophila species: D. melanogaster, D. simulans, and D. yakuba. The estimated number of adaptive substitutions per codon is not uniformly distributed among genes, but follows a leptokurtic distribution. However, the proportion of amino acid substitutions fixed by adaptive evolution seems to be remarkably constant across the genome (i.e., the proportion of amino acid substitutions that are adaptive appears to be the same in fast-evolving and slow-evolving genes; fast-evolving genes have higher numbers of both adaptive and neutral substitutions). Our estimates do not seem to be significantly biased by selection on synonymous codon use or by the assumption of independence among sites. Nevertheless, an accurate estimate is hampered by the existence of slightly deleterious mutations and variations in effective population size. The analysis of several Drosophila data sets suggests that approximately 25% +/- 20% of amino acid substitutions were driven by positive selection in the divergence between D. simulans and D. yakuba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号