首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our understanding of the interaction of carbon (C) metabolism with nitrogen (N) metabolism and growth is based mainly on studies of responses to environmental treatments, and studies of mutants and transformants. Here, we investigate which metabolic parameters vary and which parameters change in a coordinated manner in 24 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions, grown in C-limited conditions. The accessions were grown in short days, moderate light, and high nitrate, and analyzed for rosette biomass, levels of structural components (protein, chlorophyll), total phenols and major metabolic intermediates (sugars, starch, nitrate, amino acids), and the activities of seven representative enzymes from central C and N metabolism. The largest variation was found for plant weight, reducing sugars, starch at the end of the night, and several enzyme activities. High levels of one sugar correlated with high levels of other sugars and starch, and a trend to increased amino acids, slightly lower nitrate, and higher protein. The activities of enzymes at the interface of C and N metabolism correlated with each other, but were unrelated to carbohydrates, amino acid levels, and total protein. Rosette weight was unrelated or showed a weak negative trend to sugar and amino acid contents at the end of the day in most of the accessions, and was negatively correlated with starch at the end of the night. Rosette weight was positively correlated with several enzyme activities. We propose that growth is not related to the absolute levels of starch, sugars, and amino acids; instead, it is related to flux, which is indicated by the enzymatic capacity to use these central resources.  相似文献   

2.
Transformation of plant cells with T-DNA of virulent agrobacteria is one of the most extreme triggers of developmental changes in higher plants. For rapid growth and development of resulting tumors, specific changes in the gene expression profile and metabolic adaptations are required. Increased transport and metabolic fluxes are critical preconditions for growth and tumor development. A functional genomics approach, using the Affymetrix whole genome microarray (approximately 22,800 genes), was applied to measure changes in gene expression. The solute pattern of Arabidopsis thaliana tumors and uninfected plant tissues was compared with the respective gene expression profile. Increased levels of anions, sugars, and amino acids were correlated with changes in the gene expression of specific enzymes and solute transporters. The expression profile of genes pivotal for energy metabolism, such as those involved in photosynthesis, mitochondrial electron transport, and fermentation, suggested that tumors produce C and N compounds heterotrophically and gain energy mainly anaerobically. Thus, understanding of gene-to-metabolite networks in plant tumors promotes the identification of mechanisms that control tumor development.  相似文献   

3.
Capacities and constraints of amino acid utilization in Arabidopsis   总被引:3,自引:1,他引:2  
Various amino acids, including both L- and D-enantiomers, may be present in soils, and recent studies have indicated that plants may access such nitrogen (N) forms. Here, the capacity of Arabidopsis to utilize different L- and D-amino acids is investigated and the constraints on this process are explored. Mutants defective in the lysine histidine transporter 1 (LHT1) and transgenic plants overexpressing LHT1 as well as plants expressing D-amino acid-metabolizing enzymes, were used in studies of uptake and growth on various N forms. Arabidopsis absorbed all tested N-forms, but D-enantiomers at lower rates than L-forms. Several L- but no D-forms were effective as N sources. Plants deficient in LHT1 displayed strong growth reductions and plants overexpressing LHT1 showed strong growth enhancement when N was supplied as amino acids, in particular when these were supplied at low concentrations. Several D- amino acids inhibited growth of wild-type plants, while transgenic Arabidopsis-expressing genes encoding D-amino acid-metabolizing enzymes could efficiently utilize such compounds for growth. These results suggest that several amino acids, and in particular L-Gln and L-Asn, promote growth of Arabidopsis, and increased expression of specific amino acid transporters enhances growth on amino acids. The efficiency by which transgenic plants exploit D-amino acids illustrates how plants can be engineered to utilize specific N sources otherwise inaccessible to them.  相似文献   

4.
5.
An enzymatic assay system of D-amino acids was established using the D-amino acid oxidase of Schizosaccharomyces pombe. In this method, the enzyme converts the D-amino acids to the corresponding α-keto acids, which are then reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) in an organic solvent. The resultant fluorescent compounds are separated and quantified by high-performance liquid chromatography (HPLC). Use of an organic solvent following the α-keto acid modification with DMB prevents the non-enzymatic deamination of L-amino acids, which are generally present at much higher concentrations than D-amino acids in biological samples. With this method, D-Glu, D-Asn, D-Gln, D-Ala, D-Val, D-Leu, D-Phe, and D-Ile can be quantified in the order of micromolar, and other D-amino acids except D-Asp can be assayed within a sensitivity range of 50-100 μM. The established enzymatic method was used to analyze the d-amino acid contents in human urine. The concentration of D-Ser obtained using this enzymatic method (223 μM) was in good agreement with that obtained using the conventional HPLC method (198 μM). The enzymatic method also demonstrated that the human urine contained 5.45 μM of d-Ala and 0.91 μM of D-Asn. Both D-amino acids were difficult to be identified using the conventional method, because the large signals from L-amino acids masked those from d-amino acids. The enzymatic method that we have developed can circumvent this problem.  相似文献   

6.
7.
We report the production of two very long chain polyunsaturated fatty acids, arachidonic acid (AA) and eicosapentaenoic acid (EPA), in substantial quantities in a higher plant. This was achieved using genes encoding enzymes participating in the omega3/6 Delta8 -desaturation biosynthetic pathways for the formation of C20 polyunsaturated fatty acids. Arabidopsis thaliana was transformed sequentially with genes encoding a Delta9 -specific elongating activity from Isochrysis galbana, a Delta8 -desaturase from Euglena gracilis and a Delta5 -desaturase from Mortierella alpina. Instrumental in the successful reconstitution of these C20 polyunsaturated fatty acid biosynthetic pathways was the I. galbana C18-Delta9 -elongating activity, which may bypass rate-limiting steps present in the conventional Delta6 -desaturase/elongase pathways. The accumulation of EPA and AA in transgenic plants is a breakthrough in the search for alternative sustainable sources of fish oils.  相似文献   

8.
Chromatographic determination of L- and D-amino acids in plants   总被引:1,自引:0,他引:1  
Quantities of free L- and D-amino acids (L- and D-AAs) in plants (leaves of coniferous and decidious trees, fleshy fruits, leaf blades of fodder grasses, and seeds and seedlings of edible legumes) were determined. Amino acid (AA) enantiomers were converted into diastereomers using pre-column derivatization with o-phthaldialdehyde together with N-isobutyryl-L(or D)-cysteine followed by separation of the resulting fluorescent isoindol derivatives on an octadecylsilyl stationary phase using high-performance liquid chromatography. Relative amounts of D-AAs were also determined by enantioselective gas chromatography-mass spectrometry on Chirasil-L-Val. Free D-AAs acids in the range of about 0.2% up to 8% relative to the corresponding L-AAs acids were found in plants. D-Asp, D-Asn, D-Glu, D-Gln, D-Ser and D-Ala could be detected in most of the plants, and D-Pro, D-Val, D-Leu and D-Lys in certain plants. As D-AAs were detected in gymnosperms as well as mono- and dicotyledonous angiosperms of major plant families it is concluded that free D-AAs in the low percentage range are principle constituents of plants.  相似文献   

9.
Plants represent the major source of food for humans, either directly or indirectly through their use as livestock feeds. Plant foods are not nutritionally balanced because they contain low proportions of a number of essential metabolites, such as vitamins and amino acids, which humans and a significant proportion of their livestock cannot produce on their own. Among the essential amino acids needed in human diets, Lys, Met, Thr and Trp are considered as the most important because they are present in only low levels in plant foods. In the present review, we discuss approaches to improve the levels of the essential amino acids Lys and Met, as well as of sulfur metabolites, in plants using metabolic engineering approaches. We also focus on specific examples for which a deeper understanding of the regulation of metabolic networks in plants is needed for tailor-made improvements of amino acid metabolism with minimal interference in plant growth and productivity.  相似文献   

10.
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against L-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.  相似文献   

11.
D-aspartic acid (D-Asp) has been isolated from neuroendocrine tissues of many invertebrates and vertebrates. Recently, it has been demonstrated that this D-amino acid may be converted to N-methyl-D-aspartic acid (NMDA), a neuromodulator associated with sexual activity. In this study, we determined D-Asp and NMDA concentrations in endocrine glands and other tissues in ewes after D-Asp administration and in controls. We also evaluated the effects of d-Asp administration on the reproductive activity of ewes by determining either progesterone concentrations or LH pulses in the presence or absence of estradiol benzoate. The pineal gland showed the highest natural content of D-Asp (1.47+/-0.22 micromol/g tissue), whereas the pituitary gland had the highest capability to store d-Asp, with a peak value (9.7+/-0.81 micromol/g tissue) 6 h after its administration. NMDA increased sharply 12 h following D-Asp administration, reaching values three times higher than the baseline in both the pituitary and brain. D-Asp was quickly adsorbed after subcutaneous administration, with a peak in plasma levels 2 h after administration and a return to baseline values after 6 h. D-Asp administration achieved a significant (P < 0.001) increase in LH values with respect to estradiol or estradiol + D-Asp treatments. d-Asp treatment once or twice a week did not successfully drive acyclic ewes into reproductive activity. In conclusion, the results obtained in this study demonstrated that D-Asp is endogenously present in sheep tissues and electively stored in endocrine glands and brain after its administration. NMDA and LH increase following D-Asp administration suggesting a role of this D-amino acid in the reproductive activity of sheep.  相似文献   

12.
We have developed an effective method for the synthesis of various D-amino acids from the corresponding α-keto acids and ammonia by coupling four enzyme reactions catalyzed by D-amino acid aminotransferase, glutamate racemase, glutamate dehydrogenase, and formate dehydrogenase. In this system, D-glutamate is continuously regenerated from α-ketoglutarate, ammonia and NADH by the coupled reaction of glutamate dehydrogenase and glutamate racemase, and used as an amino donor for the enantioselective D-amino acid synthesis by the D-amino acid aminotransferase reaction. The unidirectional formate dehydrogenase reaction is also coupled to regenerate NADH consumed. Under the optimum conditions, D-enantiomers of valine, alanine, α-keto analogues with a molar yield higher than 80%.  相似文献   

13.
Significant advances in our knowledge of fatty acid breakdown in plants have been made since the subject was last comprehensively reviewed in the early 1990s. Many of the genes encoding the enzymes of peroxisomal beta-oxidation of straight chain fatty acids have now been identified. Biochemical genetic approaches in the model plant, Arabidopsis thaliana, have been particularly useful not only in the identification and functional characterisation of genes involved in fatty acid beta-oxidation but also in establishing the role of beta-oxidation at different stages in plant development. Advances in our understanding of branched chain amino acid catabolism have provided convincing evidence that mitochondria play an important role in this process. This work is discussed in the context of the long running debate on the sub-cellular localisation of fatty acid beta-oxidation in plants. A significant aspect of this review is that it provides the opportunity to present a comprehensive analysis of the complete Arabidopsis genome sequence for each of the different gene families that are known to be involved in beta-, alpha-, and omega-oxidation of fatty acids in plants. Inevitably, this increase in information, as well as providing many answers also raises many new intriguing questions, particularly as regards the regulation and physiological role of fatty acid catabolism throughout the higher plant life cycle.  相似文献   

14.
Changes in oxygen and/or glucose availability may result in altered levels of ATP production and amino acid levels, and alteration in lactic acid production. However, under certain metabolic insults, the retina demonstrates considerable resilience and maintains ATP production, and/or retinal function. We wanted to investigate whether this resilience would be reflected in alterations in the activity of key enzymes of retinal metabolism, or enzymes associated with amino acid production that may supply their carbon skeleton for energy production. Enzymatic assays were conducted to determine the activity of key retinal metabolic enzymes total ATPase and Na(+)/K(+)-ATPase, aspartate aminotransferase and lactate dehydrogenase. In vitro anoxia led to an increase in retinal lactate dehydrogenase activity and to a decrease in retinal aspartate aminotransferase activity, without significant changes in Na(+)/K(+)-ATPase activity. In vivo inhibition of glutamine synthetase resulted in a short-term significant decrease in retinal aspartate aminotransferase activity. An increase in retinal aspartate aminotransferase and lactate dehydrogenase activities was accompanied by altered levels of amino acids in neurons and glia after partial inhibition of glial metabolism, implying that short- and long-term up- and down-regulation of key metabolic enzymes occurs to supply carbon skeletons for retinal metabolism. ATPase activity does not appear to fluctuate under the metabolic stresses employed in our experimental procedures.  相似文献   

15.
Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot be compensated by photorespiratory serine biosynthesis. Using isotope labeling, we show that PPSB-deficiency impairs the synthesis of proteins and purine nucleotides in plants. Furthermore, deficiency in PPSB-mediated serine biosynthesis leads to a strong accumulation of metabolites related to nitrogen metabolism. This result corroborates 15N-isotope labeling in which we observed an increased enrichment in labeled amino acids in PPSB-deficient plants. Expression studies indicate that elevated ammonium uptake and higher glutamine synthetase/glutamine oxoglutarate aminotransferase (GS/GOGAT) activity causes this phenotype. Metabolic analyses further show that elevated nitrogen assimilation and reduced amino acid turnover into proteins and nucleotides are the most likely driving forces for changes in respiratory metabolism and amino acid catabolism in PPSB-deficient plants. Accordingly, we conclude that even though photorespiration generates high amounts of serine in plants, PPSB-derived serine is more important for plant growth and its deficiency triggers the induction of nitrogen assimilation, most likely as an amino acid starvation response.

The phosphorylated pathway of serine biosynthesis is required to synthesize serine for plant growth; and its deficiency triggers an amino acid starvation response by inducing nitrogen assimilation.  相似文献   

16.
Aminodeoxychorismate lyase is a pyridoxal 5'-phosphate-dependent enzyme that converts 4-aminodeoxychorismate to pyruvate and p-aminobenzoate, a precursor of folic acid in bacteria. The enzyme exhibits significant sequence similarity to two aminotransferases, D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase. In the present study, we have found that aminodeoxychorismate lyase catalyzes the transamination between D-alanine and pyridoxal phosphate to produce pyruvate and pyridoxamine phosphate. L-Alanine and other D- and L-amino acids tested were inert as substrates of transamination. The pro-R hydrogen of C4' of pyridoxamine phosphate was stereospecifically abstracted during the reverse half transamination from pyridoxamine phosphate to pyruvate. Aminodeoxychorismate lyase is identical to D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase in the stereospecificity of the hydrogen abstraction, and differs from all other pyridoxal enzymes that catalyze pro-S hydrogen transfer. Aminodeoxychorismate lyase is the first example of a lyase that catalyzes pro-R-specific hydrogen abstraction. The result is consistent with recent X-ray crystallographic findings showing that the topological relationships between the cofactor and the catalytic residue for hydrogen abstraction are conserved among aminodeoxychorismate lyase, D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase [Nakai, T., Mizutani, H., Miyahara, I., Hirotsu, K., Takeda, S., Jhee, K.-H., Yoshimura, T., and Esaki, N. (2000) J. Biochem. 128, 29-38].  相似文献   

17.
植物丝氨酸:乙醛酸氨基转移酶(SGAT)与谷氨酸:乙醛酸氨基转移酶(GGAT)主要催乙醛酸的转氨反应,是光呼吸途径中的两种关键酶。此两种酶大都为二聚体,在高等植物体内主要位于过氧化物酶体内,而在真核藻类植物体内则位于线粒体内,对植物的生长发育与抗逆性具有重要影响。本文对SGAT与GGAT在植物光合作用、氨基酸代谢和抗逆性等方面的研究进展进行了综述,以期对SGAT与GGAT的研究有所帮助。  相似文献   

18.

Background

D-amino acids are far less abundant in nature than L-amino acids. Both L- and D-amino acids enter soil from different sources including plant, animal and microbial biomass, antibiotics, faeces and synthetic insecticides. Moreover, D-amino acids appear in soil due to abiotic or biotic racemization of L-amino acids. Both L- and D-amino acids occur as bound in soil organic matter and as “free“ amino acids dissolved in soil solution or exchangeably bound to soil colloids. D-amino acids are mineralized at slower rates compared to the corresponding L-enantiomers. Plants have a capacity to directly take up “free“ D-amino acids by their roots but their ability to utilize them is low and thus D-amino acids inhibit plant growth.

Scope

The aim of this work is to review current knowledge on D-amino acids in soil and their utilization by soil microorganisms and plants, and to identify critical knowledge gaps and directions for future research.

Conclusion

Assessment of “free“ D-amino acids in soils is currently complicated due to the lack of appropriate extraction procedures. This information is necessary for consequent experimental determination of their significance for crop production and growth of plants in different types of managed and unmanaged ecosystems. Hypotheses on occurrence of “free“ D-amino acids in soil are presented in this review.  相似文献   

19.
An interesting phenomenon was observed that the existence of the intact cell membrane can enhance the D-amino acids production from D,L-5-substituted hydantoins by reacting with the whole cells of Agrobacterium radiobacter. Two intracellular enzymes were involved in the reaction process. The first enzyme D-hydantoinase converted hydantoins to carbamoyl derivatives which were further converted to D-amino acids by D-amidohydrolase. The amount of D-amino acids produced from hydantoins by the intact cells were 1.8–2.4 fold higher than the toluene treated cells. In addition, by using the intact cells the amount of D-amino acids produced from hydantoins was about 10 fold higher than that produced directly from carbamoyl derivatives. The relatively lower permeability of cell membrane to the reaction intermediate carbamoyl derivatives was confirmed by a simple mathematical model to be the main factor for the better performance of the intact cells for D-amino acid production. Besides, the low intracellular enzymes activities also contributed to the effect of intact cell membrane on enhancing the D-amino acid production.  相似文献   

20.
In higher plants, peroxisomes have been believed to play a pivotal role in three metabolic pathways, which are lipid breakdown, photorespiration and H2O2-detoxificaton. Recently, significant progress in the study of plant peroxisomes was established by forward-/reverse-genetics and post-genomic approaches using Arabidopsis thaliana, the first higher plant to have its entire genome sequenced. These studies illustrated that plant peroxisomes have more diverse functions than we previously thought. Research using Arabidopsis thaliana is improving our understanding of the function of plant peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号