首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
2.
3.
Recent research into the human genome has generated a wealth of scientific knowledge and increased both public and professional interest in the concept of personalised medicine. Somewhat unexpectedly, in addition to increasing our understanding about the genetic basis for numerous diseases, these new discoveries have also spawned a burgeoning new industry of ‘consumer genetic testing’. In this paper, we present the principles learnt though the evaluation of tests for single gene disorders and suggest a comparable framework for the evaluation of genetic tests for susceptibility to common complex diseases. Both physicians and the general public will need to be able to assess the claims made by providers of genetic testing services, and ultimately policy-makers will need to decide if and when such tests should be offered through state funded healthcare systems.  相似文献   

4.
Grove EA 《Neuron》2005,48(4):522-524
Normal brain function requires the development of precise connections between thalamus and cerebral cortex. In this issue of Neuron, Cang et al. and Tori and Levitt argue that EphA/ephrin-A signaling in the target tissue guides sensory thalamic axons to the correct cortical area, and sensory cortical axons to precise thalamic targets. Although EphA/ephrin-A signaling organizes sensory maps within areas, and thalamocortical axons in the internal capsule, both papers argue that each developmental event is dissociable from the others.  相似文献   

5.
Chromatin-binding proteins must navigate the complex nuclear milieu to find their sites of action, and a constellation of protein factors and other properties are likely to influence targeting specificity. Despite considerable progress, the precise rules by which binding specificity is achieved have remained elusive. Here, we consider early targeting events for two groups of chromatin-binding complexes in Drosophila: the Male-Specific Lethal (MSL) and the Polycomb group (PcG) complexes. These two serve as models for understanding targeting, because they have been extensively studied and play vital roles in Drosophila, and their targets have been documented at high resolution. Furthermore, the proteins and biochemical properties of both complexes are largely conserved in multicellular organisms, including humans. While the MSL complex increases gene expression and PcG members repress genes, the two groups share many similarities such as the ability to modify their chromatin environment to create active or repressive domains, respectively. With legacies of in-depth genetic, biochemical and now genomic approaches, the MSL and PcG complexes will continue to provide tractable systems for understanding the recruitment of multiprotein chromatin complexes to their target loci.  相似文献   

6.
7.
8.
All livestock animal species harbour complex microbial communities throughout their digestive tract that support vital biochemical processes, thus sustaining health and productivity. In part as a consequence of the strong and ancient alliance between the host and its associated microbes, the gut microbiota is also closely related to productivity traits such as feed efficiency. This phenomenon can help researchers and producers develop new and more effective microbiome-based interventions using probiotics, also known as direct-fed microbials (DFMs), in Animal Science. Here, we focus on one type of such beneficial microorganisms, the yeast Saccharomyces. Saccharomyces is one of the most widely used microorganisms as a DFM in livestock operations. Numerous studies have investigated the effects of dietary supplementation with different species, strains and doses of Saccharomyces (mostly Saccharomyces cerevisiae) on gut microbial ecology, health, nutrition and productivity traits of several livestock species. However, the possible existence of Saccharomyces which are indigenous to the animals’ digestive tract has received little attention and has never been the subject of a review. We for the first time provide a comprehensive review, with the objective of shedding light into the possible existence of indigenous Saccharomyces of the digestive tract of livestock. Saccharomyces cerevisiae is a nomadic yeast able to survive in a broad range of environments including soil, grass and silages. Therefore, it is very likely that cattle and other animals have been in direct contact with this and other types of Saccharomyces throughout their entire existence. However, to date, the majority of animal scientists seem to agree that the presence of Saccharomyces in any section of the gut only reflects dietary contamination; in other words, these are foreign organisms that are only transiently present in the gut. Importantly, this belief (i.e. that Saccharomyces come solely from the diet) is often not well grounded and does not necessarily hold for all the many other groups of microbes in the gut. In addition to summarizing the current body of literature involving Saccharomyces in the digestive tract, we discuss whether the beneficial effects associated with the consumption of Saccharomyces may be related to its foreign origin, though this concept may not necessarily satisfy the theories that have been proposed to explain probiotic efficacy in vivo. This novel review may prove useful for biomedical scientists and others wishing to improve health and productivity using Saccharomyces and other beneficial microorganisms.  相似文献   

9.
The recent paper of Sherr and Sherr on detecting low-affinity beta-glucosaminidase activity in several marine microbes extends current knowledge about hydrolytic enzyme activities in natural aquatic systems. However, their conclusions regarding the whole-cell assay with MUF-N-acetyl-beta-D-glucosaminide (MUF-[GlcNAc]) cannot be accepted. First, we explicitly demonstrate a strong correlation between extracellular activities of the high-affinity enzymes and grazing rates of bacterivorous protists. Therefore, the assay can still be recommended for the estimation of total protistan grazing on prokaryotic picoplankton. Second, the ability of many aquatic organisms to produce enzymes which cleave fluorogenic substrates, such as MUF-[GlcNAc] and/or MUF-beta-D-N,N',N"-triacetylchitotriose (MUF-[GlcNAc](3)), has been well-documented during the last decade. Thus, neither of the two substrates may be considered as exclusively specific for targeting either lysozymes or beta-N-acetylhexosaminidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号