首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aimed to evaluate the effectiveness of low-frequency ultrasounds applied to eliminate Campylobacter spp. from water. The strains used in this research were isolated from water contaminated with sewage. Campylobacter coli alone was detected in the samples and used for further research. The reference strain C. coli ATCC 33559 was simultaneously tested. The isolate was exposed to ultrasounds at frequencies of 37 kHz and 80 kHz in a continuous operation device with ultrapure deionized water. After 5 min of sonication, the count of C. coli decreased by 5.78% (37 kHz) and 6.27% (80 kHz), whereas the temperature increased by 3°C (37 kHz), and 6°C (80 kHz). After 30 min of sonication, the death rates of bacterial cells were 40.15% (37 kHz) and 55.10% (80 kHz), whereas the temperature reached the maximum values of 36°C (37 kHz), and 39°C (80 kHz). Sonication at the frequency of 80 kHz reduced the bacterial count from 6.86 log CFU/ml to 3.08 log CFU/ml, whereas the frequency of 37 kHz reduced the bacterial count from 6.75 log CFU/ml to 4.04 log CFU/ml. Despite significant differences (p < 0.05) in the number of C. coli cells, the cell death rate remained at the same level. Open in a separate window  相似文献   

2.
Four sausage batters (17.59% beef, 60.67% pork, and 17.59% pork fat) were inoculated with two commercial starter culture organisms (>7 log(10) CFU/g Pediococcus pentosaceus and 6 log(10) CFU/g Staphylococcus carnosus) and a five-strain cocktail of nonpathogenic variants of Escherichia coli O157:H7 to yield 6 to 7 log(10) CFU/g. Microencapsulated allyl isothiocyanate (AIT) was added to three batters at 500, 750, or 1,000 ppm to determine its antimicrobial effects. For sensory analysis, separate batches with starter cultures and 0, 500, or 750 ppm microencapsulated AIT were produced. Sausages were fermented at < or =26 degrees C and 88% relative humidity (RH) for 72 h. Subsequently sausages were dried at 75% RH and 13 degrees C for at least 25 days. The water activity (a(w)), pH, and levels of starter cultures, E. coli O157:H7, and total bacteria were monitored during fermentation and drying. All sausages showed changes in the initial pH from 5.57 to 4.89 and in a(w) from 0.96 to 0.89 by the end of fermentation and drying, respectively. Starter culture numbers were reduced during sausage maturation, but there was no effect of AIT on meat pH reduction. E. coli O157:H7 was reduced by 6.5 log(10) CFU/g in sausages containing 750 and 1,000 ppm AIT after 21 and 16 days of processing, respectively. E. coli O157:H7 numbers were reduced by 4.75 log(10) CFU/g after 28 days of processing in treatments with 500 ppm AIT, and the organism was not recovered from this treatment beyond 40 days. During sensory evaluation, sausages containing 500 ppm AIT were considered acceptable although slightly spicy by panelists.  相似文献   

3.
Escherichia coli O157:H7 and Listeria monocytogenes were able to grow for a period of 2 days in fresh chicken manure at 20 degrees C with a resulting 1-2 log units increase in CFU; Salmonella typhimurium remained stable. Prolongation of the storage time to 6 days resulted in a 1-2 log decreases of S. typhimurium compared to the initial count and a 3-4 log decrease of E. coli O157:H7; the number of L. monocytogenes did not decrease below the initial. These changes were accompanied by an increase in pH and accumulation of ammonia in the manure. The destruction of the three microorganisms was greatly increased by drying the manure to a moisture content of 10% followed by exposure to ammonia gas in an amount of 1% of the manure wet weight; S. typhimurium and E. coli O157:H7 were reduced by 8 log units, L. monocytogenes by 4.  相似文献   

4.
The antimicrobial effects of ozonated water in a recirculating concurrent reactor were evaluated against four gram-positive and four gram-negative bacteria, two yeasts, and spores of Aspergillus niger. More than 5 log units each of Salmonella typhimurium and Escherichia coli cells were killed instantaneously in ozonated water with or without addition of 20 ppm of soluble starch (SS). In ozonated water, death rates among the gram-negative bacteria--S. typhimurium, E. coli, Pseudomonas aeruginosa, and Yersinia enterocolitica--were not significantly different (P > 0.05). Among gram-positive bacteria, Listeria monocytogenes was significantly P < 0.05) more sensitive than either Staphylococcus aureus or Enterococcus faecalis. In the presence of organic material, death rates of S. aureus compared with L. monocytogenes and E. coli compared with S. typhimurium in ozonated water were not significantly (P > 0.05) affected by SS addition but were significantly reduced (P < 0.05) by addition of 20 ppm of bovine serum albumin (BSA). More than 4.5 log units each of Candida albicans and Zygosaccharomyces bailii cells were killed instantaneously in ozonated water, whereas less than 1 log unit of Aspergillus niger spores was killed after a 5-min exposure. The average ozone output levels in the deionized water (0.188 mg/ml) or water with SS (0.198 mg/ml) did not differ significantly (P < 0.05) but were significantly lower in water containing BSA (0.149 mg/ml).  相似文献   

5.
Potassium sorbate, sodium benzoate, sulfur dioxide, and diethylpyrocarbonate (DEPC) were tested for their effectiveness in preventing the outgrowth ofByssochlamys nivea Westling ascospores. Sulfur dioxide was the most inhibitory of the test antimycotics, complete inhibition of colony formation occurring in acidified (pH 3.5) potato dextrose agar containing 50 ppm of the preservative. Complete inhibition ofB. nivea ascospore outgrowth in grape juice stored for 60 days was noted in the presence of 300 ppm sulfur dioxide, 400 ppm potassium sorbate, and 600 ppm DEPC. Growth was observed in grape juice containing 1000 ppm sodium benzoate. The presence of up to 100 ppm potassium sorbate in grape juice during heat activation appears to have a stimulatory effect on breaking dormancy, while the other test preservatives at this concentration decrease the heat resistance ofB. nivea ascospores. The time elapsed between heat shock and exposure to DEPC or sodium benzoate is critical with respect to the sensitivity of ascospores to these preservatives.  相似文献   

6.
7.
Horseradish peroxidase (HRP), when incubated with diethylpyrocarbonate (DEPC), shows a time-dependent loss of iodide oxidation activity. The inactivation follows pseudo-first order kinetics with a second order rate constant of 0.43 min-1 M-1 at 30 degrees C and is reversed by neutralized hydroxylamine. The difference absorption spectrum of the modified versus native enzyme shows a peak at 244 nm, characteristic of N-carbethoxyhistidine, which is diminished by treatment with hydroxylamine. Correlation between the stoichiometry of histidine modification and the extent of inactivation indicates that out of 2 histidine residues modified, one is responsible for inactivation. A plot of the log of the reciprocal half-time of inactivation against log DEPC concentration further suggests that only 1 histidine is involved in catalysis. The rate of inactivation shows a pH dependence with an inflection point at 6.2, indicating histidine derivatization by DEPC. Inactivation due to modification of tyrosine, lysine, or cysteine has been excluded. CD studies reveal no significant change in the protein or heme conformation following DEPC modification. We suggest that a unique histidine residue is required for maximal catalytic activity of HRP for iodide oxidation.  相似文献   

8.
We report here for the first time variations in the viability and biochemical activity of dahi and yoghurt cultures, when grown together with therapeutic cultures, such as Lactobacillus acidophilus I and Bifidobacterium bifidum R, in buffalo skim milk. Nearly one log reduction in mesophilic lactic count was observed in dahi supplemented with probiotic cultures after 18 h of incubation at 30 °C. Associative growth increased the titratable acidity (TA) of dahi marginally (from 0.93 to 1.18 % lactic acid) but reduced the TA in yoghurt (from 1.68 to 1.44 % lactic acid). Probiotic culture supplementation reduced volatile acidity (VA) (from 36.0 to 15.8 ml) and diacetyl (from 4.05 to 2.80 ppm) and tyrosine (from 0.46 to 0.36 μg tyrosine/g curd ) content in dahi, whereas it increased VA (from 8.2 to 8.6 ml of 0.01 % NaoH/50 g) and acetaldehyde (from 28.4 to 34.6 ppm) production in yoghurt. Based on these results, the associative growth had no effect on proteolytic activity of probiotic yoghurt.  相似文献   

9.
The heat resistance of Bacillus subtilis var. niger has been measured from 85 to 125 degrees C using moisture levels of percent relative humidity (%RH) less than or equal to 0.001 to 100 in a closed system. Five curves have been presented to characterize the thermal destruction, using thermal death times defined as F values at a given combination of three moisture and temperature conditions. Reductions of 99.99% (4-log10 cycles) of the initial population were estimated for the three moisture conditions. At 110 degrees C, the expected time for a 4-log10 reduction was 1.1 h at %RH = 100, 3.1 h at %RH less than or equal to 0.1 and 54 h at %RH = 10.7. Goodness-of-fit tests to examine the adequacy of three polynomial models failed to indicate a trend. The linear model (from which estimates of D are obtained) was satisfactory for estimating the thermal death times (%RH less than or equal to 0.1) in the plate count range. The estimates based on observed thermal death times and D values for the %RH = 100 diverged so that D values generally gave a more conservative estimate over the temperature range 90 to 125 degrees C. Estimates of ZF and ZL ranged from 32.1 to 58.3 degrees C for the %RH less than or equal to 0.1 and 100. A ZD value of 30.0 was obtained for data observed at %RH less than or equal to 0.1. The ZF results were obtained from plotting observed log times to achieve a 99.99% reduction in the initial population versus temperature. Estimates of ZL and ZD were obtained by using linear estimates of L100 approximately equal to 4D and D values in a similar plot.  相似文献   

10.
The heat resistance of Bacillus subtilis var. niger has been measured from 85 to 125 degrees C using moisture levels of percent relative humidity (%RH) less than or equal to 0.001 to 100 in a closed system. Five curves have been presented to characterize the thermal destruction, using thermal death times defined as F values at a given combination of three moisture and temperature conditions. Reductions of 99.99% (4-log10 cycles) of the initial population were estimated for the three moisture conditions. At 110 degrees C, the expected time for a 4-log10 reduction was 1.1 h at %RH = 100, 3.1 h at %RH less than or equal to 0.1 and 54 h at %RH = 10.7. Goodness-of-fit tests to examine the adequacy of three polynomial models failed to indicate a trend. The linear model (from which estimates of D are obtained) was satisfactory for estimating the thermal death times (%RH less than or equal to 0.1) in the plate count range. The estimates based on observed thermal death times and D values for the %RH = 100 diverged so that D values generally gave a more conservative estimate over the temperature range 90 to 125 degrees C. Estimates of ZF and ZL ranged from 32.1 to 58.3 degrees C for the %RH less than or equal to 0.1 and 100. A ZD value of 30.0 was obtained for data observed at %RH less than or equal to 0.1. The ZF results were obtained from plotting observed log times to achieve a 99.99% reduction in the initial population versus temperature. Estimates of ZL and ZD were obtained by using linear estimates of L100 approximately equal to 4D and D values in a similar plot.  相似文献   

11.
High pH has been shown to rapidly destroy gram-negative food-borne pathogens; however, the mechanism of destruction has not yet been elucidated. Escherichia coli O157:H7, Salmonella enteritidis ATCC 13706, and Listeria monocytogenes F5069 were suspended in NaHCO3-NaOH buffer solutions at pH 9, 10, 11, or 12 to give a final cell concentration of approximately 5.2 x 10(8) CFU/ml and then held at 37 or 45 degrees C. At 0, 5, 10, and 15 min the suspensions were sterilely filtered and each filtrate was analyzed for material with A260. Viability of the cell suspensions was evaluated by enumeration on nonselective and selective agars. Cell morphology was evaluated by scanning electron microscopy and transmission electron microscopy. A260 increased dramatically with pH and temperature for both E. coli and S. enteritidis; however, with L. monocytogenes material with A260 was not detected at any of the pHs tested. At pH 12, numbers of E. coli and S. enteritidis decreased at least 8 logs within 15 s, whereas L. monocytogenes decreased by only 1 log in 10 min. There was a very strong correlation between the initial rate of release of material with A260 and death rate of the gram-negative pathogens (r = 0.997). At pH 12, gram-negative test cells appeared collapsed and showed evidence of lysis while gram-positive L. monocytogenes did not, when observed by scanning and transmission electron microscopy. It was concluded that destruction of gram-negative food-borne pathogens by high pH involves disruption of the cytoplasmic membrane.  相似文献   

12.
Salmonella senftenberg 775W added to frankfurter emulsion was killed during normal processing in the smoke house when internal product temperature was 71.1 C (160 F) or above. The thermal destruction point of S. senftenberg 775W in frankfurters (temperature at which no viable cells were detected) was a function of the length of time of the process rather than of the starting number of cells. Heating of frankfurters to 73.9 C (165 F) substantially reduced the total non-salmonella count. For total non-salmonella bacterial flora and salmonella, relatively little thermal destruction occurred below 43.3 C (110 F). The heating step can bring about a 7-log cycle decrease (10(8) to 10(1)/g) of bacteria present in the raw emulsion. The flora of this high-bacteriological-count raw emulsion was predominantly gram-negative rods. Variation in the number of bacteria (both total and salmonella) surviving at various temperatures during processing was attributed to slight variations in the temperature pattern of the smoke house during its operation. An integration process was devised which allowed calculation of exposure to temperatures above 110 F (43.3 C) on the basis of degree-minutes. Plots of degree-minutes versus log of surviving bacteria were linear. The salmonella plot had a greater slope than that of the total non-salmonella flora, indicating that salmonellae are more heat sensitive than the bacterial population as a whole. The predominant bacteria surviving the heating step were micrococci. These micrococci were able to increase in number in or on the frankfurters during storage at 5 C.  相似文献   

13.
The milk supply is considered a primary route for a bioterrorism attack with Bacillus anthracis spores because typical high-temperature short-time (HTST) pasteurization conditions cannot inactivate spores. In the event of intentional contamination, an effective method to inactivate the spores in milk under HTST processing conditions is needed. This study was undertaken to identify combinations and concentrations of biocides that can inactivate B. anthracis spores at temperatures in the HTST range in less than 1 min. Hydrogen peroxide (HP), sodium hypochlorite (SH), and peroxyacetic acid (PA) were evaluated for their efficacy in inactivating spores of strains 7702, ANR-1, and 9131 in milk at 72, 80, and 85 degrees C using a sealed capillary tube technique. Strains ANR-1 and 9131 were more resistant to all of the biocide treatments than strain 7702. Addition of 1,260 ppm SH to milk reduced the number of viable spores of each strain by 6 log CFU/ml in less than 90 and 60 s at 72 and 80 degrees C, respectively. After neutralization, 1,260 ppm SH reduced the time necessary to inactivate 6 log CFU/ml (TTI6-log) at 80 degrees C to less than 20 s. Treatment of milk with 7,000 ppm HP resulted in a similar level of inactivation in 60 s. Combined treatment with 1,260 ppm SH and 1,800 ppm HP inactivated spores of all strains in less than 20 s at 80 degrees C. Mixing 15 ppm PA with milk containing 1,260 ppm SH resulted in TTI6-log of 25 and 12 s at 72 and 80 degrees C, respectively. TTI6-log of less than 20 s were also achieved at 80 degrees C by using two combinations of biocides: 250 ppm SH, 700 ppm HP, and 150 ppm PA; and 420 ppm SH (pH 7), 1,100 ppm HP, and 15 ppm PA. These results indicated that different combinations of biocides could consistently result in 6-log reductions in the number of B. anthracis spores in less than 1 min at temperatures in the HTST range. This information could be useful for developing more effective thermal treatment strategies which could be used in HTST milk plants to process contaminated milk for disposal and decontamination, as well as for potential protective measures.  相似文献   

14.
A study was made of the effects of foliar spray of bacitracin, chloramphenicol and gibberellic acid on the rhizosphere microflora of pea seedlings (Pisum sativum L.) infected withVerticillium dahliae. The antibiotics increased fungus and actinomycete counts and reduced the bacterial populations in the rhizosphere. Gibberellic acid at 10 ppm concentration reduced all three groups of microorganisms while at 100 ppm fungi and actinomycetes increased slightly. Invariably the rhizosphere effect was as follows: bacteria > fungi > actinomycetes. Foliar sprays also affected the percentage occurrence of particular genera of fungi in the rhizosphere; for example,Trichoderma spp. were stimulated by all the treatments, the maximum being with 10 ppm gibberellic acid, even though the total fungus count was reduced. The disease severity was markedly reduced by foliar sprays.  相似文献   

15.
Control of the foodborne pathogens Escherichia coli O157:H7, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes during sufu fermentation was evaluated. Before fermentation, pathogens were inoculated onto tofu (substrate for sufu) at 5 log cfu/g or 3 log cfu/g, and starter culture (Actinomucor elegans) was inoculated at 3 log cfu/g. After 2 days of fermentation at 30 degrees C, the four pathogens reached 7 to 9 log cfu/g, and the mold count reached 6 to 7 log cfu/g. After fermentation, sufu samples were aged in a solution of 10% alcohol + 12% NaCl. After 1 month of aging, the total bacterial count was 6 to 7 log cfu/g, but all foodborne pathogens and mold were reduced to nondetectable levels. The total bacterial count decreased after aging for 2 months and 3 months, but the differences were not significant (P > 0.05) compared with the count after 1 month. Microorganism in experimental sufu from different aging periods and in commercial sufu were compared. A total of 270 isolates were purified and identified by the BBL Crystal Identification System. From the experimental sufu samples, 49 Bacillus spp. (20.4%), 167 Enterococcus spp. (69.6%), 6 Shewanella putrefaciens (2.4%), and 18 miscellaneous gram-negative bacilli (7.5%) were identified. From commercial sufu samples, 17 Bacillus spp. (56.7%), 2 Enterococcus durans (6.7%), 5 miscellaneous gram-negative bacilli (16.7%), 5 Corynbacterium aquaticum (16.7%), and 1 Shewanella putrefaciens (3.3%) were obtained. Although the longer aging period did not significantly decrease the total bacterial count, it may help in the development of sufu flavor. This study showed that sufu fermentation and aging can control common foodborne pathogens, so sufu is a safe product even though its preparation does not include pasteurization.  相似文献   

16.
A halophilic isolate Salimicrobium halophilum strain LY20 producing extracellular amylase and protease was isolated from Yuncheng, China. Production of both enzymes was synchronized with bacterial growth and reached a maximum level during the early-stationary phase. The amylase and protease were purified to homogeneity with molecular weights of 81 and 30?kDa, respectively. Optimal amylase activity was observed at 70?°C, pH 10.0% and 10% NaCl. Complete inhibition by EDTA, diethyl pyrocarbonate (DEPC), and phenylarsine oxide (PAO) indicated that the amylase was a metalloenzyme with histidine and cysteine residues essential for its catalysis. Maltose was the main product of starch hydrolysis, indicating an β-amylase activity. The purified protease from LY20 showed highest activity at 80?°C, pH 10.0% and 12.5% NaCl. Complete inhibition was shown by phenylmethylsulfonyl fluoride, DEPC, and PAO, indicating that the enzyme probably belonged to the subclass of the serine proteases with histidine and cysteine residues essential for catalysis. Furthermore, both enzymes were highly stable over broad temperature (30-80?°C), pH (6.0-12.0) and NaCl concentration (2.5-20%) ranges, showing excellent thermostable, alkalistable, and halotolerant nature. The surfactants (SDS, Tween 80, and Triton X-100) did not affect their activities. In addition, both enzymes from LY20 displayed remarkable stability in the presence of water-soluble organic solvents with log P(ow) (?) ≤?-0.24.  相似文献   

17.
In 1996, the first documented outbreak of salmonellosis associated with the consumption of peanut butter was reported. This study was undertaken to determine survival characteristics of high (5.68 log10 cfu g(-1)) and low (1.51 log10 cfu g(-1)) inocula of a five-serotype mixture of Salmonella in five commercial peanut butters and two commercial peanut butter spreads. Populations in samples inoculated with 5.68 log10 cfu g(-1) and stored for 24 weeks at 21 or 5 degrees C decreased 4.14-4.50 log10 cfu g(-1) and 2.86-4.28 log10 cfu g(-1), respectively, depending on the formulation. The order of retention of viability was: peanut butter spreads > traditional (regular) and reduced sugar, low-sodium peanut butters > natural peanut butter. Differences in rates of inactivation are attributed to variation in product composition as well as size and stability of water droplets in the colloidal matrix, which may influence nutrient availability. With the exception of natural peanut butter, products initially inoculated with 1.51 log10 cfu of Salmonella g(-1) (32 cfu g(-1)) were positive for the pathogen after storage for 24 weeks at 5 degrees C. At 21 degrees C, however, with the exception of one peanut butter spread, all products were negative for Salmonella after storage for 24 weeks. Post-process contamination of peanut butter and spreads with Salmonella may to result in survival in these products for the duration of their shelf life at 5 degrees C and possibly 21 degrees C, depending on the formulation.  相似文献   

18.
X Zhang  A L Tsai  R J Kulmacz 《Biochemistry》1992,31(9):2528-2538
The role of histidine in catalysis by prostaglandin H synthase has been investigated using chemical modification with diethyl pyrocarbonate (DEPC), an agent that has been found to rather selectively derivatize histidine residues in proteins under mild conditions. Incubation of the synthase apoprotein with DEPC at pH 7.2 resulted in a progressive loss of the capacity for both cyclooxygenase and peroxidase catalytic activities. The kinetics of inactivation of the cyclooxygenase activity were dependent on the concentration of DEPC; a second-order rate constant of 680 M-1 min-1 was estimated for reaction of the apoenzyme at pH 7.2 and 0 degrees C. The kinetics of inactivation of the cyclooxygenase by DEPC exhibited a sigmoidal dependence on the pH, indicating that deprotonation of a group with a pKa of 6.3 was required for inactivation. The presence of the heme prosthetic group slowed, but did not prevent, inactivation by DEPC. The stoichiometry of histidine modification of apoenzyme during inactivation determined from absorbance increases at 242 nm agreed well with the overall stoichiometry of derivatized residues determined with [14C]DEPC, indicating that modification by DEPC was quite selective for histidine residues on the synthase. Although modification of several histidine residues by DEPC was observed, only one of the histidine residues was essential for cyclooxygenase activity. Modification of the holoenzyme with DEPC altered the EPR signal of the hydroperoxide-induced tyrosyl free radical from the wide doublet (35 G, peak-to-trough) found with the native synthase to a narrower singlet (28 G, peak-to-trough) quite like that found in the indomethacin-synthase complex. Reaction of the indomethacin-synthase complex with DEPC was found to increase the cyclooxygenase velocity by 9 times its initial value, to about one-third of the uninhibited value, without displacement of the indomethacin; the peroxidase was significantly inactivated under the same conditions. Histidyl residues in the synthase are thus likely to have important roles not only in cyclooxygenase and peroxidase catalysis but also in the interaction of the synthase with indomethacin.  相似文献   

19.
High-level transient expression of recombinant protein in lettuce   总被引:3,自引:0,他引:3  
Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations < or = 100 ppm in the vacuum infiltration did not affect GUS expression, while infiltration with an A. tumefaciens density of 10(7) and 10(8) colony forming units/mL, incubation at 29 degrees C, and a surfactant concentration of 1,000 ppm significantly reduced expression. Incubation in continuous light caused lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta.  相似文献   

20.
Indoor cultures of the green alga Scenedesmusacutus were tested for sensitivity to varying concentrations of seven insecticides and three fungicides. The growth rates of the organisms were considerably reduced by BHC and DDT analogues even at low concentrations of 500 ppb and 1 ppm. Lindane above 5 ppm and Technical BHC and DDT at 100 ppm were lethal to this alga. Of the three fungicides, TMTD (Tetra Methyl Thiurum Disulfide) was most toxic resulting in death of the culture at 10 and 100 ppm. Blitox (Copper-oxy chloride) and Zineb (Zinc Ethylene-Bis dithiocarbamate) considerably retarded growth at all concentrations. This alga was more sensitive to Lindane, BHC (Technical), DDT and TMTD. The growth rate appeared to be influenced by the concentration of pesticide present in the algal culture. As Scenedesmusacutus is being considered as a source of Single Cell Protein (SCP) for human consumption, knowledge on the sensitivity of this alga to pesticide contamination will be useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号