首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of bryology》2013,35(4):587-594
Abstract

In a population of Atrichum undulatum with n = 14, gametophytic interphase nuclei included two unequal, but substantial, blocks of heterochromatin sensu lato. Positive C-banding within each was limited to the terminal portion. Only one of these two chromosomes, together with its homologue, entered meiosis with a similarly extensive distribution of heterochromatin. The bivalent involved was metacentric and usually achiasmate in the heterochromatic region, which amounted to almost the whole of one arm. A single proximal chiasma was rare. In addition to this behavioural difference between the two basically haploid sets of seven chromosomes included in what has been regarded as auto diploid A. undulatum, evidence of a morphological distinction is presented. Six pairs were recognizable on morphological grounds but two chromosomes were unique. Meiosis in triploid A. undulatum with n = 21 also included only a single heterochromatic bivalent.

Variation between basically haploid complements is also presented for Philonotis fontana, in a population of which a dimorphic bivalent was consistently present during meiosis. The dimorphism was related to the presence or absence of a short heterochromatic arm and, hence, of synapsis between telocentric and acrocentric homologues. Sampling to date suggests an association with dioecism.  相似文献   

2.
Chromosome homology and evolution of emydid turtles   总被引:4,自引:0,他引:4  
G-, C-, Q-banding and standard karyotypic analyses were used to study the chromosomal relationships of emydid turtles. Ten species of emydids were used (5 batagurines and 5 emydines) which samples all of the karyotypic variation known for the Emydidae. Data from a testudinid and a chelydrid are compared to the emydids. The karyotype of Mauremys and Sacalia is considered representative of the primitive karyotype for this group because of its widespread occurrence in the morphologically primitive Batagurinae and its similarity to that of some testudinids. The emydine karyotype is believed to have evolved from the primitive batagurine karyotype by the deletion of a heterochromatic macrochromosome. Siebenrockiella and Rhinoclemys are karyotypically derived batagurines.  相似文献   

3.
Barth, D. Bernhard, D. Fritzsch, G. & Fritz, U. (2004): The freshwater turtle genus Mauremys— a textbook example of an east–west disjunction or a taxonomic misconcept? —Zoologica Scripta, 33, 213–221. We compare 1036 bp of the mitochondrial cytochrome b gene (cyt b) from all six Mauremys species with 16 other taxa, representing both currently recognized subfamilies of the Geoemydidae (Geoemydinae and Batagurinae) to contribute a comprehensive dataset towards resolving the conflicting Mauremys taxonomy and phylogeography. Mauremys, a representative of the Geoemydinae, is thought to be an example of a taxon with an east–west disjunction due to Pleistocene glacial extinction, with species occurring in the western Palearctic and species in the eastern Palearctic and Oriental regions. Our results contradict this traditional zoogeographical scheme and the current taxonomy of the Geoemydidae. Mauremys is paraphyletic with respect to two East Asian genera belonging to the Batagurinae: Chinemys and Ocadia. Therefore, Mauremys, as currently understood, clearly represents a taxonomic misconcept. Mauremys+Chinemys+Ocadia contains four well supported clades, two of which —M. japonica+Chinemys+Ocadia and M. annamensis+M. mutica— are confined to eastern Asia. The other two —M. caspica+M. rivulata and M. leprosa— occur in the western Palearctic. Mauremys leprosa may represent an ancient lineage which differentiated before the split between the other western and eastern species occurred. The patchy distribution of the four clades is likely the result of several ancient radiations rather than of a Pleistocene extinction. The sister‐group of Mauremys+Chinemys+Ocadia is Cuora, a morphologically highly specialized genus with a complicated shell hinging mechanism.  相似文献   

4.
5.
The meiotic behaviour of autosomal heterochromatic segments in hedgehogs   总被引:2,自引:1,他引:1  
Male meiosis in the two species of hedgehogs Erinaceus europaeus and Aethechinus algirus, possessing respectively three and two pairs of autosomes with large blocks of heterochromatin, has been studied. The heterochromatic segments pair homologously till the end of pachytene, but separate during diplotene, owing to lack of chiasmata in these regions. They also organize the nucleolus in both species. The sex chromosomes (sex vesicle) are not associated with the nucleolus. The lack of chiasmata in the heterochromatic segments is interpreted as possible mechanism for the conservation of vital genes, such as ribosomal cistrons.  相似文献   

6.
Differences in length of the heterochromatic short arms of the X and Y chromosomes in individuals ofPeromyscus beatae are hypothesized to result from unequal crossing over. To test this hypothesis, we examined patterns of synapsis, chiasma formation, and segregation for maleP. beatae which were either heterozygous or homozygous for the amount of short-arm sex heterochromatin. Synaptonemal complex analysis demonstrated that mitotic differences in heterochromatic shortarm lengths between the X and Y chromosomes were reflected in early pachynema as corresponding differences in axial element lengths within the pairing region of the sex bivalent. These length differences were subsequently eliminated by synaptic adjustment such that by late pachynema, the synaptonemal complex configurations of the XY bivalent of heterozygotes were not differentiable from those of homozygotes. Crossing over between the heterochromatic short arms of the XY bivalent was documented by the routine appearance of a single chiasma in this region during diakinesis/metaphase I. Sex heterochromatin heterozygotes were characterized by the presence of asymmetrical chiasma between the X and Y short arms at diakinesis/metaphase I and sex chromosomes with unequal chromatid lengths at metaphase II. These data corroborate our hypothesis on the role of unequal crossing over in the production and propagation of X and Y heterochromatin variation and suggest that, in some cases, crossing over can occur during the process of synaptic adjustment.  相似文献   

7.
A chromosome complement formed by 16 autosomes and an Xyp sex chromosome system was found in Epilachna paenulata Germar (Coleoptera: Coccinellidae). All autosomes were metacentric except pair 1 which was submetacentric. The X and the Y chromosomes were also submetacentric but the Y was minute. The whole chromosome set carried large paracentric heterochromatic C-segments representing about 15% of the haploid complement length. Heterochromatic segments associated progressively during early meiotic stages forming a large single chromocenter. After C-banding, chromocenters revealed an inner networklike filamentous structure. Starlike chromosome configurations resulted from the attachment of bivalents to the chromocenters. These associations were followed until early diakinesis. Thin remnant filaments were also observed connecting metaphase I chromosomes. Evidence is presented that, in this species, the Xyp bivalent resulted from an end-to-end association of the long arms of the sex chromosomes. The parachute Xyp bivalent appeared to be composed of three distinct segments: two intensely heterochromatic C-banded corpuscles formed the canopy and a V-shaped euchromatic filament connecting them represented the parachutist component. The triple constitution of the sex bivalent was interpreted as follows: each heterochromatic corpuscle corresponded to the paracentric C-segment of the X and Y chromosomes; the euchromatic filament represented mainly the long arm of the X chromosome terminally associated with the long arm of the Y chromosome. The complete sequence of the formation of the Xyp bivalent starting from nonassociated sex chromosomes in early meiotic stages, and progressing through pairing of heterochromatic segments, coiling of the euchromatic filament, and movement of the heterochromatic corpuscles to opposite poles is described. These findings suggest that in E. paenulata the Xyp sex bivalent formation is different than in other coleopteran species and that constitutive heterochromatic segments play an important role not only in chromosome associations but also in the Xyp formation.  相似文献   

8.
Burns JA  Gerstel DU 《Genetics》1973,75(3):497-502
A heterochromatic block (HB) from N. otophora occasionally undergoes great enlargement to form a "megachromosome" in hybrids and hybrid derivatives with N. tabacum. This paper shows that the two large HB's of closely related N. tomentosiformis, and perhaps a smaller one, also have the same capability. The evidence that both large HB's form megachromosomes is twofold. In a segregating backcross population from a parent possessing the two large HB's, all segregants with one block produced megachromosomes at metaphase or large heterochromatic clumps at interphase. Second, those segregants which possessed both heterochromatic blocks produced megachromosomes of two visibly different types. Proliferation to make megachromosomes thus may not be the property of merely one particular segment but a more common property of heterochromatin in a hybrid or otherwise disturbed background.  相似文献   

9.
Summary An extraneous heterochromatic segment was discovered in a strain selected for a large-body trait. Derivation from the X chromosome is indicated by its behavior at metaphase I and association with the X and nucleolus in early prophase I. The segment does not pair with the X. Association with a mid-length bivalent is attributed to fusion of heterochromatin. Centromeric activity of small fragments, independent of, but apparently derived from, the X, is also reported.  相似文献   

10.
Banded chromosomes of five species of testudinid turtles (Geochelone pardalis, G. elongata, G. elephantopus, Gopherus berlandieri, and G. polyphemus) reveal little variation within either genus, although there are differences in amount and distribution of heterochromatin between Geochelone pardalis and G. elongata. The chromosomal position and size of the nucleolar-organizer region differs between species of the two genera.Comparisons of standard karyotypes of these species and Malacochersus tornieri with data in the literature on other tortoises show a diploid number of 52 characterizes the family. These data are consistent with those for other families which show turtles are karyotypically conservative. G-banded chromosomes of Geochelone are identical to those of Chinemys reevesi, a karyotypically primitive batagurine emydid, supporting a derivation of the tortoises from a batagurine ancestor.  相似文献   

11.
Summary The sex chromosomes of the male phasmid Isagoras schraderi Rehn comprise an X and a Y, — each with a submedian kinetochore, and one euchromatic and one heterochromatic arm. At meiosis X and Y form an unequal sex bivalent in which the euchromatic arms are terminally associated. Relatively recent reversion from the XO-XX mechanism characteristic of the Phasmidae is indicated by the presence of the euchromatic arm in both X and Y. The diploid number of the male is 34.Unequal autosomal bivalents are found at meiosis in two other species of Isagoras — Isagoras subaquiles Rehn and Isagoras sp. — and in Pseudophasma menius Westwood. The chromosome complements of these species are described.  相似文献   

12.
Walther Traut 《Chromosoma》1976,58(3):275-284
Pachytene preparations of the chromosome complement of female larvae of Bombyx mori were improved to give a distinct chromomere pattern of the bivalents suitable for chromosome mapping. Six of the 28 bivalents are described and can be identified regularly in the bivalent complements, among them the bivalent containing the nucleolus organizer. The relative lengths of these bivalents compared with one another change during development of pachytene. In contrast to other members of the Lepidoptera there is no conspicuous heterochromatic W-chromosome, which corresponds to the female-specific heterochromatin body present in the nuclei of somatic tissues. This tissue-specific heteropycnosis indicates a different functional state of the responsible chromosome or chromosomal segment in germ line and somatic cells.  相似文献   

13.

Background  

Pericentric inversions are the most common euchromatic chromosomal differences among humans and the great apes. The human and chimpanzee karyotype differs by nine such events, in addition to several constitutive heterochromatic increases and one chromosomal fusion event. Reproductive isolation and subsequent speciation are thought to be the potential result of pericentric inversions, as reproductive boundaries form as a result of hybrid sterility.  相似文献   

14.

Revealing the genetic basis of the existence of different species living together in different geographic regions provides clarification of this phylogeographic differentiation. In this study, we investigated the population genetics and evaluated the level of genetic variation of inland and coastal populations of Mauremys and Emys in Turkey. Tissue samples of 196 terrapins were studied which were collected from syntopic coastal (Gölbent-Söke/Ayd?n; M. rivulata and E. orbicularis) and inland populations (Bahçesaray/Aksaray; M. caspica and E. orbicularis). DNA was isolated using the InnuPREP DNA Mini Kit. Mitochondrial DNA sequences and allelic variation at 13 microsatellite loci for Mauremys and 12 microsatellite loci for Emys were examined.  Three haplotypes were found for Emys orbicularis (Im, Ip and Iw) collected from the coastal region and two haplotypes for Emys orbicularis (Ig and Im) collected from inland. Two haplotypes were identified for M. caspica (Cmt8 and Cmt9) and three haplotypes were identified for M. rivulata (Rmt3, Rmt24 and Rmt26). Using microsatellites and the software STRUCTURE the most probable value for K was revealed as two 2 for both species. The FST value between M. rivulata and M. caspica was 0.39, and between the coastal and inland populations of E. orbicularis 0.09. It can be concluded that Emys populations tend to evolve by somehow preserving the allelic richness they have and Mauremys populations continue to differentiate so that new species emerge in the evolutionary process to reach the ideal allelic structure.

  相似文献   

15.
Three new genera of trypanorhynch cestodes from Australian elasmobranch fishes collected in the Arafura Sea, off the Northern Territory, are described. Fossobothrium perplexum n. g., n. sp. (Otobothriidae), from the spiral valves of Anoxypristis cuspidata (Latham) and Pristis zijsron Bleeker, is similar to the otobothriid genera Pseudotobothrium Dollfus, 1942 and Poecilancistrium Dollfus, 1929 in possessing bothrial pits and a band of hooks on the tentacle, but differs from all known otobothriid genera in having the pits joined by a prominent velum. Iobothrium elegans n. g., n. sp. (Otobothriidae), from the spiral valve of Himantura jenkinsi (Annandale), is placed in the Otobothriidae because it possesses bothrial pits, but differs from Otobothrium Linton, 1890 and other genera in lacking intercalary hooks between the principal rows and in possessing a chainette on the external surface of the tentacle in the metabasal region. Oncomegoides celatus n. g., n. sp. (Eutetrarhynchidae), from the spiral valve of Dasyatis microps (Annandale) and Himantura jenkinsi, resembles Oncomegas Dollfus, 1929 in possessing two bothria and a megahook on the bothrial surface of the basal armature, but differs in possessing an extra row consisting of four intercalary hooks formed by the overlapping of two intercalary hooks on the external tentacular surface between each of the opposing principal rows and is therefore an atypical heteroacanth.  相似文献   

16.
Abstract. A considerable interest exists worldwide in the development of live attenuated oral vaccines against diarrhoeal diseases. In addition to vaccination against the corresponding pathogens, such vaccine strains can be used as carriers for the expression of protective antigens from other organisms. The antigenic repertoire of a given vaccine strain may thereby be extended, potentially leading to a bivalent vaccine. The lipopolysaccharide is known to be a major antigenic surface component of bacterial enteric pathogens. The feasibility of the development of combined vaccines based on live attenuated carriers expressing two O-serotype specificities is illustrated here by the development of candidate live oral vaccines against Shigella sonnei using Salmonella typhi and Vibrio cholerae as carriers. Various factors that may limit the potential of such hybrid strains as bivalent vaccines are discussed.  相似文献   

17.
The behavior of the ZW sex bivalent was investigated in female meiosis of the poisonous snake Bothrops jararaca. The Z is euchromatic and synapses end to end with the W. The W chromosome shows a heterochromatic segment distally in the short arm. Pairing occurs between the long arm of the W and the slightly longer arm of the mediocentric Z. A sex vesicle, similar to the one found in the XY placental mammals, does not occur in snakes. The Z and W chromosomes segregate reductionally in the first meiotic division and equationally in the second.This work is dedicated to the memory of my father Lino Pires de Camargo  相似文献   

18.
Plethodontid salamanders in the genus Oedipina are characterized by a strongly heteromorphic sex-determining pair of X/Y chromosomes. The telocentric X chromosome and the subtelocentric Y chromosome are clearly distinguished from the autosomes and their behavior during meiosis can be sequentially followed in squash preparations of spermatocytes. In Oedipina the sex chromosomes are not obscured by an opaque sex vesicle during early meiotic stages, making it possible to observe details of sex bivalent structure and behavior not directly visible in other vertebrate groups. The sex chromosomes can first be distinguished from autosomal bivalents at the conclusion of zygotene, with X and Y synapsed only along a short segment at their non-centromeric ends, forming a bivalent that contrasts sharply with the completely synapsed autosomes. During pachytene, the XY bivalent becomes progressively shortened and more compact, disappearing as a visible structure when pachytene progresses into the diffuse stage of male meiosis. Diplotene bivalents gradually emerge from the diffuse nuclei, presumably by the return of the loops of chromatin into their respective chromomeres. During early diplotene, the X/Y bivalent is clearly visible with a single chiasma within the synapsed segment. This chiasma is terminalized by first meiotic metaphase with the X and Y appearing either in end-to-end synaptic contact or as univalents separated at opposite poles relative to the equatorially distributed autosomal bivalents. In C-banded preparations, the Y is entirely heterochromatic while the X contains a large centromeric C-band and another block of heterochromatin located at the telomeric end, in the region of synapsis with the Y. We find no cytological evidence of dosage compensation, such as differential staining of the X chromosomes or Barr bodies, in mitotic or interphase cells from female animals.  相似文献   

19.
Twelve synaptonemal complexes are present in both oocyte and spermatocyte pachytene nuclei ofAscaris lumbricoides var.suum, as determined by 3-D reconstruction of the nuclear contents from electron microscopy of serial sections and therefore, n=12 in the strain ofAscaris described here. In the female the heterochromatic end of each synaptonemal complex is attached to the nuclear envelope and the other end is free in the nucleoplasm. In the male neither end ot the synaptonemal complex is attached, but there is a heterochromatic knob at one end of each complex. Five additional large heterochromatic masses are present in the spermatocyte nucleus and these may be the sex chromosomes described by earlier workers.  相似文献   

20.
A Bardhan  T Sharma 《Génome》2000,43(1):172-180
Sequential meiotic prophase development has been followed in the pubertal male pygmy mouse Mus terricolor, with the objective to identify early meiotic prophase stages. The pygmy mouse differs from the common mouse by having large heterochromatic blocks in the X and Y chromosomes. These mice also show various chromosomal mutations; for example, fixed variations of autosomal short arms heterochromatin among different chromosomal species and pericentric inversion polymorphism. Identification of prophase stages was crucial to analyzing effects of heterozygosity for these chromosomal changes on the process of homologous synapsis. Here we describe identification of the prophase stages in M. terricolor, especially the pachytene substages, on the basis of morphology of the XY bivalent. Based on this substaging, we show delayed pairing of the heterochromatic short arms, which may be the reason for their lack of chiasmata. The identification of precise pachytene substages also reveals an early occurrence of "synaptic adjustment" in the pericentric inversion heterobivalents, a mechanism that would prevent chiasma formation in the inverted segment and thereby would abate adverse effects of such heterozygosity. The identification of pachytene substages would serve as the basis to analyze the nature of synaptic anomalies met in M. terricolor hybrids (which will be the basis of a subsequent paper).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号