首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferguson (1989) has recently argued that the variability seen in the fossils assigned toA. afarensis is far more than expected for a single hominid species, and therefore proposes they represent multiple taxa. In particular, he utilizes data on variation in dental metrics and in premolar morphology in support of this hypothesis. A re-evaluation of these data finds the above conclusion to be unwarranted. Variation in dental metrics providesno basis for separating this sample into multiple taxa, regardless of the analog that is used (i.e. modern primate species or fossil hominid species). Additionally, data on P3 morphology indicate that thepattern of variation seen in the Laetoli/Hadar sample is comparable to the sexual variation seenwithin a single hominoid species. Overall, the balance of the evidence at present indicates that the fossils from Laetoli and Hadar represent a single hominid species,A. afarensis.  相似文献   

2.
The Pliocene hominin samples from Hadar and Laetoli are thought to represent one species, Australopithecus afarensis, that exhibits stasis throughout its temporal range and has high levels of skeletal sexual dimorphism. In this paper, we test the hypothesis of stasis in dental and mandibular dimensions using nonparametric rank correlation methods to detect temporal trends and randomization tests to evaluate their statistical significance. We then use two methods (CV resampling; Fligner-Killeen test) to compare overall levels of variation in the fossil sample to those of extant hominoid species. Together, these analyses allow us to gauge the effects of changes through time on variation in mandibles and teeth of A. afarensis.P(3)mesiodistal length, M(3)size, and canine shape change through time but do not appear unusually variable in the sample as a whole. These temporal trends possibly reflect differences between the Laetoli and Hadar site-samples. For mandibles, a pronounced trend towards greater corpus size occurs late in the temporal sequence and contributes to high levels of variation compared to African apes. These results show that significant directional changes do occur in the A. afarensis mandibles and teeth, and in these elements, at least, the species is not static. Temporal variation is clearly an important component of overall variation in the A. afarensis lineage, even though other factors, such as sexual dimorphism, may also play a part.  相似文献   

3.
The discovery of Australopithecus afarensis has led to new interpretations of hominid phylogeny, some of which reject A. africanus as an ancestor of Homo. Analysis of buccolingual tooth crown dimensions in australopithecines and Homo species by Johanson and White (Science 202:321-330, 1979) revealed that the South African gracile australopithecines are intermediate in size between Laetoli/hadar hominids and South African robust hominids. Homo, on the other hand, displays dimensions similar to those of A. afarensis and smaller than those of other australopithecines. These authors conclude, therefore, that A. africanus is derived in the direction of A. robustus and is not an ancestor of the Homo clade. However, there is a considerable time gap (ca. 800,000 years) between the Laetoli/Hadar specimens and the earliest Homo specimens; "gracile" hominids from Omo fit into this chronological gap and are from the same geographic area. Because the early specimens at Omo have been designated A. afarensis and the later specimens classified as Homo habilis, Omo offers a unique opportunity to test hypotheses concerning hominid evolution, especially regarding the phylogenetic status of A. africanus. Comparisons of mean cheek teeth breadths disclosed the significant (P less than or equal to 0.05) differences between the Omo sample and the Laetoli/Hadar fossils (P4, M2, and M3), the Homo fossils (P3, P4, M1, M2, and M1), and A. africanus (M3). Of the several possible interpretations of these data, it appears that the high degree of similarity between the Omo sample and the South African gracile australopithecine material warrants considering the two as geographical variants of A. africanus. The geographic, chronologic, and metric attributes of the Omo sample argue for its lineal affinity with A. afarensis and Homo. In conclusion, a consideration of hominid postcanine dental metrics provides no basis for removing A. africanus from the ancestry of the Homo lineage.  相似文献   

4.
The Maka locality in Ethiopia's Middle Awash area has yielded new craniodental remains dated to 3.4 million years (myr) in age. These remains are described and assessed functionally and systematically. The fossils are assigned to Australopithecus afarensis. Maka thus joins Hadar and Laetoli as the third major locality yielding this species. As with previous site samples, the Maka collection displays a wide range of size variation. The nearly complete and undistorted MAK-VP-1/12 adult mandible from Maka is an excellent match for Hadar and Laetoli counterparts, confirming the geographic and temporal distribution of A. afarensis. This specimen shows that this taxon is functionally and developmentally hominid in its incisor/canine/premolar complex. A postulated evolutionary trajectory through A. anamensis to A. afarensis would have involved postcanine megadontia and other adaptations to a more heavily masticated diet relative to the earlier Ardipithecus ramidus.  相似文献   

5.
The fossil sample attributed to the late Miocene hominoid taxon Ouranopithecus macedoniensis is characterized by a high degree of dental metric variation. As a result, some researchers support a multiple-species taxonomy for this sample. Other researchers do not think that the sample variation is too great to be accommodated within one species. This study examines variation and sexual dimorphism in mandibular canine and postcanine dental metrics of an Ouranopithecus sample. Bootstrapping (resampling with replacement) of extant hominoid dental metric data is performed to test the hypothesis that the coefficients of variation (CV) and the indices of sexual dimorphism (ISD) of the fossil sample are not significantly different from those of modern great apes. Variation and sexual dimorphism in Ouranopithecus M(1) dimensions were statistically different from those of all extant ape samples; however, most of the dental metrics of Ouranopithecus were neither more variable nor more sexually dimorphic than those of Gorilla and Pongo. Similarly high levels of mandibular molar variation are known to characterize other fossil hominoid species. The Ouranopithecus specimens are morphologically homogeneous and it is probable that all but one specimen included in this study are from a single population. It is unlikely that the sample includes specimens of two sympatric large-bodied hominoid species. For these reasons, a single-species hypothesis is not rejected for the Ouranopithecus macedoniensis material. Correlations between mandibular first molar tooth size dimorphism and body size dimorphism indicate that O. macedoniensis and other extinct hominoids were more sexually size dimorphic than any living great apes, which suggests that social behaviors and life history profiles of these species may have been different from those of living species.  相似文献   

6.
S.-H. Lee   《HOMO》2005,56(3):219-232
Size sexual dimorphism is one of the major components of morphological variation and has been associated with socioecology and behavioral variables such as mating patterns. Although several studies have addressed the magnitude and pattern of sexual dimorphism in Australopithecus afarensis, one of the earliest hominids, consensus has yet to be reached. This paper uses assigned resampling method, a data resampling method to estimate the magnitude of sexual dimorphism without relying on individual sex assessments, to examine the fossil hominid sample from Hadar. Two questions are asked: first, whether sexual dimorphism in a selected sample of skeletal elements of A. afarensis is the same as that in living humans, chimpanzees, or gorillas; and second, whether different skeletal elements reflect variation in sexual dimorphism in the same way. All possible metric variables were used as data in applying the method, including seven variables from three elements (mandibular canine, humerus, femur). Analyses show that A. afarensis is similar in size sexual dimorphism to gorillas in femoral variables, to humans in humeral variables, and to chimpanzees in canine variables. The results of this study are compatible with the hypothesis that the pattern of sexual dimorphism in A. afarensis is different from any that are observed in living humans or apes.  相似文献   

7.
The locomotor anatomy of Australopithecus afarensis   总被引:6,自引:0,他引:6  
The postcranial skeleton of Australopithecus afarensis from the Hadar Formation, Ethiopia, and the footprints from the Laetoli Beds of northern Tanzania, are analyzed with the goal of determining (1) the extent to which this ancient hominid practiced forms of locomotion other than terrestrial bipedality, and (2) whether or not the terrestrial bipedalism of A. afarensis was notably different from that of modern humans. It is demonstrated that A. afarensis possessed anatomic characteristics that indicate a significant adaptation for movement in the trees. Other structural features point to a mode of terrestrial bipedality that involved less extension at the hip and knee than occurs in modern humans, and only limited transfer of weight onto the medial part of the ball of the foot, but such conclusions remain more tentative than that asserting substantive arboreality. A comparison of the specimens representing smaller individuals, presumably female, to those of larger individuals, presumably male, suggests sexual differences in locomotor behavior linked to marked size dimorphism. The males were probably less arboreal and engaged more frequently in terrestrial bipedalism. In our opinion, A. afarensis from Hadar is very close to what can be called a "missing link." We speculate that earlier representatives of the A. afarensis lineage will present not a combination of arboreal and bipedal traits, but rather the anatomy of a generalized ape.  相似文献   

8.
Hominins are a very rare component of the large-mammal fauna at Laetoli. Although no equivalent data are available for Hadar, the much higher count and relative abundance of hominins suggests that they may have been more common at the latter site. The apparent relative rarity of hominins at Laetoli may have significant implications for understanding the ecology of Australopithecus afarensis. However, it is essential to first assess the extent to which taphonomic variables might have been a contributing factor. Using data from fossil ruminants, we show that the survivability of skeletal elements at Laetoli relates to the extent to which they can resist carnivore scavenging and their likelihood of being entirely buried by volcanic ashes and tuffaceous sediments. The rarity of hominins at Laetoli is probably due in part to the influence of these two taphonomic factors. However, these factors cannot account entirely for the difference in hominin relative abundance between these two sites, and ecological differences were probably a contributing factor. The highest population densities of chimpanzees today occur in forest and closed woodland, with reduced densities in open woodland. If similar levels of population-density variation characterized A. afarensis, the differences between Hadar and Laetoli may relate to the quality/optimality of the habitats. Hadar was, in general, much more densely wooded and mesic than Laetoli, with permanent and substantial bodies of water. In contrast, Laetoli was predominantly a woodland-shrubland-grassland mosaic supported only by ephemeral streams and ponds. The apparent greater relative abundance of hominins at Hadar compared with Laetoli suggests that, like chimpanzees, A. afarensis may have been more successful in more densely wooded habitats. Compared with Hadar, Laetoli probably represented a less optimal habitat for the foraging and dietary behavior of A. afarensis, and this is reflected in their inferred lower abundance, density, and biomass.  相似文献   

9.
Previous studies have recognized two patterns of distal femoral morphology among the specimens from Hadar (Ethiopia) assigned to Australopithecus afarensis. Size and shape differences between the well-preserved large (AL 333-4) and small (AL 129-1a) distal femora have been used to invoke both taxonomic and functional differences within the A. afarensis hypodigm. Nevertheless, prior studies have not analyzed these specimens in a multivariate context, nor have they compared the pattern of shape differences between the fossils to patterns of sexual dimorphism among extant taxa (i.e., the manner in which males and females differ). This study reexamines morphometric differences between the above specimens in light of observed levels of variation and patterns of sexual dimorphism among extant hominoids. Eight extant reference populations were sampled to provide a standard by which to consider size and shape differences between the fossils. Samples include three populations of modern humans, two subspecies of Pan troglodytes, three subspecies of Gorilla gorilla, Pan paniscus, and Pongo pygmaeus. Using size ratios and scale-free "shape" data (both derived from 2-D coordinate landmarks), size and shape differences between the fossils were evaluated against variation within each reference population using an exact randomization procedure. Growth Difference Matrix Analysis (GDMA) was used to test whether the pattern of morphological differences between the fossils differs significantly from patterns of sexual dimorphism observed among the ten extant groups. Overall morphometric affinities of the fossils to extant taxa were explored using canonical variates analysis (CVA).Results of the randomization tests indicate that the size difference between the Hadar femora can be easily accommodated within most hominoid taxa at the subspecific level (though not within single-sex samples). In addition, the magnitude of shape differences between the fossils can be commonly sampled even within most single-sex samples of a single hominoid subspecies. The pattern of morphological differences between the fossils does not differ statistically from any average pattern of femoral shape dimorphism observed among living hominoids. Moreover, contrary to prior claims, and despite a size disparity between the fossils greater than is typically observed within some chimpanzee and human populations, the two Hadar fossils appear to be much more similar to one another in overall shape than either specimen is to any extant hominoid group.  相似文献   

10.
The probable misfit between feet, particularly toes II–V, of 3.0-million-year-oldAustralopithecus afarensis from Hadar, Ethiopia, and the 3.5-million-year-old hominid footprints at Site G, Laetoli, Tanzania, casts doubt thatA. Afarensis made the Laetoli trails. We suggest that another species ofAustralopithecus or an anonymous genus of the Hominidae, with remarkably humanoid feet, walked at Laetoli. It would be imprudent to declare thatHomo was present at Laetoli 3.5 million years ago (my) because there is no evidence of brain expansion, advanced tool manufacture, or other non-locomotor hallmarks of the human condition at Site G.  相似文献   

11.
Hominid footprints at Laetoli: facts and interpretations   总被引:1,自引:0,他引:1  
The history of discovery and interpretation of primate footprints at the site of Laetoli in northern Tanzania is reviewed. An analysis of the geological context of these tracks is provided. The hominid tracks in Tuff 7 at Site G in the Garusi River Valley demonstrate bipedality at a mid-Pliocene datum. Comparison of these tracks and the Hadar hominid foot fossils by Tuttle has led him to conclude that Australopithecus afarensis did not make the Tanzanian prints and that a more derived form of hominid is therefore indicated at Laetoli. An alternative interpretation has been offered by Stern and Susman who posit a conforming "transitional morphology" in both the Tanzanian prints and the Ethiopian bones. The present examines both hypotheses and shows that neither is likely to be entirely correct. To illustrate this point, a reconstruction of the foot skeleton of a female A. afarensis is undertaken, and the results are compared to the Laetoli tracks. We conclude that A. afarensis represents the best candidate for the maker of the Laetoli hominid trails.  相似文献   

12.
Among extant hominoids degrees of sexual dimorphism and combined-sex coefficients of variation of canine teeth dimensions are highly correlated. Based on this relationship and coefficients of variation of four species of the genus Australopithecus, we predict degrees of canine dimorphism for these extinct hominids. The estimates show that A. afarensis is as dimorphic as the pygmy chimpanzee, A. boisei slightly less dimorphic than the pygmy chimpanzee, A. robustus slightly more dimorphic than the lar gibbon, while A. africanus overiaps with the lar gibbon as well as a modern human sample. These estimates represent degrees of canine dimorphism substantially lower than results based upon prior sexing of individual specimens. The relationship between canine dimorphism and body weight dimorphism is also analyzed. All four species of Australopithecus are considerably less dimorphic in canine size for their body weight dimorphism than expected. This dissociation of canine size dimorphism and body weight dimorphism is shared with modern humans, and thus represents a unique hominid trait. We interpret the moderate to strong body weight dimorphism in australopithecines as the result of intra- and intersexual selection typical of a polygynous mating structure, while the rather mild canine dimorphism is interpreted in terms of the “developmental crowding” model for reduction in canine size.  相似文献   

13.
Although more than 60 ancient hominid track sites ranging in age from 3.7 million to less than 500 B. P. are recorded from all continents except Antarctica, no ichnotaxonomic names have ever been formally proposed for hominid tracks. There is no prohibition to the naming of fossil footprints of species that created tracks and trackways similar to those of living species. On the contrary, there is precedent for the naming of ichnotaxa corresponding to the dominant extant vertebrates classes: mammals = Mammalipedia and birds = Avipeda. The hominid track site sample includes only about a dozen sites where footprint preservation is good enough to show details of diagnostic foot morphology and typical trackway morphology. We infer that the Acahualinca Footprint Museum site in Nicaragua represents the most important ancient hominid track site that combines accessibility, a large sample of well-preserved trackways and reliable dating. For this reason, we select the Nicaraguan tracks as the type sample for the new ichnotaxon Hominipes modernus ichnogen., and ichnsp. et ichnosp. nov., which we infer to represent fully modern Homo sapiens. Our preliminary investigations of other track sites suggest that the majority also yield H. modernus. However, at many sites preservation is insufficient to make an ichnotaxonomic designation at the species level or to infer that the trackmaker was H. sapiens. Thus, at many sites including the famous Laetoli site, we apply the more general label of Hominipes isp. indet.  相似文献   

14.
The teeth of 28 Griqua skeletons were subjected to odontometric analysis. Significant sexual dimorphism in tooth size was demonstrated in canines and molars. Coefficients of variation were generally greater in the more distal tooth within morphological classes. Rank order correlations suggest similar patterns of variability in males and females. Comparisons of the Griqua dentition with similar populations were made.  相似文献   

15.
Laccopithecus robustus is a siamang-sized fossil ape from the Miocene site of Lufeng, China. The species is known from a partial cranium, numerous mandibles, and scores of isolated teeth. This species shows striking dental similarities to Pliopithecus from the Miocene of Europe and a number of cranial similarities to extant gibbons. Laccopithecus differs from extant gibbons and resembles other fossil and extant apes in showing marked sexual dimorphism in the size and shape of the canines and anterior lower premolars. Evidence for sexual differences in either the size or shape of other teeth is less clear. There is some evidence for a sexual size dimorphism based on the variability of molar teeth.  相似文献   

16.
Sexual dimorphism is an important source of morphological variation, and species differences in dimorphism may be reflected in magnitude, pattern, or both. While the extant great apes are commonly used as a reference sample for distinguishing between sexual dimorphism and intertaxic variation in the fossil record, few studies have evaluated mandibular dimorphism in these taxa. In this study, percentage, degree, and pattern of mandibular dimorphism are evaluated in Pongo, Gorilla, and Pan. Mandibular dimorphism patterns are explored to determine the extent to which such patterns accurately track great ape phylogeny. Pattern stability is assessed to determine whether there are stable patterns of mandibular size and shape dimorphism that may be usefully applied to hominoid or hominid fossil species recognition studies. Finally, the established patterns of dimorphism are used to address recent debates surrounding great ape taxonomy. Results demonstrate that mandibular dimorphism is universally expressed in size, but only Pongo and Gorilla exhibit shape dimorphism. Pattern similarity tends to be greater between subspecies of the same species than between higher-order taxa, suggesting that within the great apes, there is a relationship between dimorphism pattern and phylogeny. However, this relationship is not exact, given that dimorphism patterns are weakly correlated between some closely related taxa, while great ape subspecies may be highly correlated with taxa belonging to other species or genera. Furthermore, dimorphism patterns are not significantly correlated between great ape genera, even between Gorilla and Pan. Dimorphism patterns are more stable in Gorilla and Pongo as compared to Pan, but there is little pattern stability between species or genera. Importantly, few variables differ significantly between taxa that simultaneously show consistently relatively low levels of dimorphism and low levels of variation within taxa. Combined, these findings indicate that mandibular dimorphism patterns can and do vary considerably, even among closely related species, and suggest that it would be difficult to employ great ape mandibular dimorphism patterns for purposes of distinguishing between intra- and interspecies variation in fossil samples. Finally, the degree of pattern similarity in mandibular dimorphism is lower than previously observed by others for craniofacial dimorphism. Thus, the possibility cannot be ruled out that patterns of craniofacial dimorphism in great apes may be associated with a stronger phylogenetic signal than are patterns of mandibular dimorphism.  相似文献   

17.
Most estimates of sexual size dimorphism in Australopithecus afarensis indicate that this early hominin was more dimorphic than modern humans. In contrast, a recent study reported that size variation in A. afarensis, as represented by postcranial remains from Hadar and Maka, Ethiopia, is statistically most similar to that of modern humans, indicating a humanlike level of sexual dimorphism. Here, we evaluate the evidence for humanlike dimorphism in A. afarensis. We argue that statistical support for this claim is not as robust as has been asserted for the following reasons: (1) the analysis from which the claim was derived does not distinguish the A. afarensis sample from either the human or chimpanzee samples; (2) for some of the comparisons made, the A. afarensis sample cannot be distinguished from the Gorilla sample using two-tailed tests; and (3) the A. afarensis postcranial sample used in the analysis may contain more male than female specimens, which precludes a straightforward interpretation of the statistical results. Thus, support for humanlike dimorphism is equivocal, and a greater level of dimorphism cannot be ruled out.  相似文献   

18.
Clam shrimps have been recognized as a key group for the study of reproductive system evolution, owing to the diversity of sexual systems in extant members. However, there are comparatively little data on fossil taxa. In this study, we reveal the sexual system of the Early Cretaceous clam shrimp Eosestheria middendorfii (Yixian Formation, China). This is the first study that restricts the analysis to a single cohort, minimizing the otherwise considerable impact of ecophenotypic variation within this species. In addition, the presence of egg clutches, which identifies some individuals as either female or hermaphroditic, serves as an independent indicator for sex prior to the statistical treatment of the data. Obligate sexuality (‘dioecy’) is the inferred reproductive system for E. middendorfii and sexual dimorphism accounts for about 10% of the adult shape variation. Carapace shape variation resulting from malformation and deformation is more pronounced than the underlying sexual dimorphism. Subtle sexual dimorphism, smaller and slightly more elongate females, lateral egg clutches, and egg diameters of about 140 μm indicate that E. middendorfii is closely allied with the extant family Cyzicidae.  相似文献   

19.
Modern humans are characterized by their large, complex, and specialized brain. Human brain evolution can be addressed through direct evidence provided by fossil hominid endocasts (i.e. paleoneurology), or through indirect evidence of extant species comparative neurology. Here we use the second approach, providing an extant comparative framework for hominid paleoneurological studies. We explore endocranial size and shape differences among great apes and humans, as well as between sexes. We virtually extracted 72 endocasts, sampling all extant great ape species and modern humans, and digitized 37 landmarks on each for 3D generalized Procrustes analysis. All species can be differentiated by their endocranial shape. Among great apes, endocranial shapes vary from short (orangutans) to long (gorillas), perhaps in relation to different facial orientations. Endocranial shape differences among African apes are partly allometric. Major endocranial traits distinguishing humans from great apes are endocranial globularity, reflecting neurological reorganization, and features linked to structural responses to posture and bipedal locomotion. Human endocasts are also characterized by posterior location of foramina rotunda relative to optic canals, which could be correlated to lesser subnasal prognathism compared to living great apes. Species with larger brains (gorillas and humans) display greater sexual dimorphism in endocranial size, while sexual dimorphism in endocranial shape is restricted to gorillas, differences between males and females being at least partly due to allometry. Our study of endocranial variations in extant great apes and humans provides a new comparative dataset for studies of fossil hominid endocasts.  相似文献   

20.
An important debate has been taking place during the last few years concerningAustralopithecus afarensis: can the Hadar sample be ascribed to one highly dimorphic species or should it be separated into two distinct taxa? A similar problem occurs with the Middle Miocene cercopithecoids from East Africa: does this material belong to one dimorphic group or can we recognize two different taxa? The study of the long bones of the upper limb of many extant primates suggests that the extremities in different taxa are very distinctive but that within taxa the joints are weakly or are not morphologically dimorphic although they can be markedly size dimorphic. The main shape and size differences which can be ascribed to sexual dimorphism occur in the shafts of the long bones. Examinations have been made inHomo, Pan, Gorilla, Pongo, Hylobates, Alouatta, Cebus, Saimiri, Ateles, Nasalis, Presbytis and some Cercopithecinae. It appears, then, that the extremities of the bones are shape monomorphic. If the same relationships occurred in the fossil record, then the differences observed in the hominid fossil elbow joints at Hadar suggest that at least two different taxa are represented in the collection. In addition, among the cercopithecoid material assigned toVictoriapithecus from Maboko and Nyakach in East Africa, we recognize two distinct elbow morphologies indicating that two different taxa occur in the localities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号