首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In several animal species, change in sexual size dimorphism is a correlated response to selection on fecundity. In humans, different hypotheses have been proposed to explain the variation of sexual dimorphism in stature, but no consensus has yet emerged. In this paper, we evaluate from a theoretical and an empirical point of view the hypothesis that the extent of sexual dimorphism in human populations results from the interaction between fertility and size-related obstetric complications. We first developed an optimal evolutionary model based on extensive simulations and then we performed a comparative analysis for a total set of 38 countries worldwide. Our optimization modelling shows that size-related mortality factors do indeed have the potential to affect the extent of sexual stature dimorphism. Comparative analysis using generalized linear modelling supports the idea that maternal death caused by deliveries and complications of pregnancy (a variable known to be size related) could be a key determinant explaining variation in sexual stature dimorphism across populations. We discuss our results in relation to other hypotheses on the evolution of sexual stature dimorphism in humans.  相似文献   

2.
Gymnotiform electric fish emit an electric organ discharge that, in several species, is sexually dimorphic and functions in gender recognition. In addition, some species produce frequency modulations of the electric organ discharge, known as chirps, that are displayed during aggression and courtship. We report that two congeneric species (Apteronotus leptorhynchus and A. albifrons) differ in the expression of sexual dimorphism in these signals. In A. leptorhynchus, males chirp more than females, but in A. albifrons chirping is monomorphic. The gonadosomatic index and plasma levels of 11-ketotestosterone were equivalent in both species, suggesting that they were in similar reproductive condition. Corresponding to this difference in dimorphism, A. leptorhynchus increases chirping in response to androgens, but chirping in A. albifrons is insensitive to implants of testosterone, dihydrotestosterone or 11-ketotestosterone. Species also differ in the sexual dimorphism and androgen sensitivity of electric organ discharge frequency. In A. leptorhynchus, males discharge at higher frequencies than females, and androgens increase electric organ discharge frequency. In A.␣albifrons, males discharge at lower frequencies than females, and androgens decrease electric organ discharge frequency. Thus, in both chirping and electric organ discharge frequency, evolutionary changes in the presence or direction of sexual dimorphism have been accompanied and perhaps caused by changes in the androgen regulation of the electric organ discharge. Accepted: 18 February 1998  相似文献   

3.
Two morphological types, righty and lefty, are found in several fish species. Righty predators mainly prey on lefty prey and vice versa (called cross predation). This dimorphism is heritable in a Mendelian one-locus–two-allele fashion. The frequency of righty individuals in a population oscillates periodically. To determine the effect of cross predation on this oscillation, we constructed mathematical models that describe a genetic basis of lateral dimorphism assuming genetic drift in a one-predator–two-prey system and three trophic levels with omnivory. Both models have an equilibrium of both righty and lefty types at a frequency of 0.5. Mathematical analyses and computer simulations showed that the dimorphism is maintained and that its frequency oscillated with or without genetic drift. Large degrees of drift and high intrinsic growth rates and predation efficiencies of prey species caused the frequency oscillations to be amplified and their period to be long. When cross predation decreased as a proportion of all predation, the righty frequency of a prey species fluctuated non-periodically. These differences in fluctuation patterns were observed in natural systems. Our model suggests that both cross predation and genetic drift dictate the maintenance of dimorphism and the patterns of its fluctuations.  相似文献   

4.
A number of factors, including sexual selection, body weight, body-weight dimorphism, predation, diet, and phylogenetic inertia have been proposed as influences on the evolution of canine dimorphism in anthropoid primates. Although these factors are not mutually exclusive, opinions vary as to which is the most important. The role of sexual selection has been questioned because mating system, which should reflect its strength, poorly predicts variation in canine dimorphism, particularly among polygynous species. Kay et al. (1988) demonstrate that a more refined estimate of intermale competition explains a large proportion of the variation in canine dimorphism in platyrrhine primates. We expand their analysis, developing a more generalized measure of intermale competition based on the frequency and intensity of male-male agonism. We examine the relative influences of predation (inferred by substrate use), female body weight, body-weight dimorphism, diet, and sexual selection on the evolution of anthropoid canine dimorphism. Intermale competition is very strongly associated with canine dimorphism. Predation also has a marked effect on canine dimorphism, in that savanna-dwelling species consistently show greater canine dimorphism than other species, all other factors being held equal. Body-weight dimorphism is also strongly associated with canine dimorphism, though apparently through a common selective basis, rather than through allometric effects. Body weight seems to play only a minor, indirect role in the evolution of canine dimorphism. Diet plays no role. Likewise, we find little evidence that phylogenetic inertia is a constraint on the evolution of canine dimorphism.  相似文献   

5.
Frequency analysis of heart sounds has been gaining recognition as a possible indicator of several heart and valve diseases, although a comprehensive study of normal heart sounds has not been published. Relating the frequency content of normal heart sounds to certain physical characteristics surrounding the generation of these sounds could lead to a valuable diagnostic tool and give a better understanding of the mechanism of heart sounds production. In this study, the first and second heart sounds from seventy-four normal, and seven hypertensive volunteers were recorded, digitized and analysed using a Fast Fourier Transform algorithm. Statistical analysis was used to relate physical characteristicss (sex, blood pressure, and body surface area) of the subjects to the frequency content of normal heart sounds and to compare normal and hypertensive heart sounds. Statistical analysis showed that the major concentration of energy, for both first heart sound (S1) and second heart sound (S2), is below 150 Hertz (Hz) which may indicate that both sounds are caused by vibrations within the same structure, possibly the entire heart. However S2 spectra have greater amplitude than S1 spectra above 150 Hz, which may be due to vibrations within the aorta and pulmonary artery. Relationships observed between body surface area, sex, blood pressure, and the frequency content of heart sounds indicate that as heart size increases, the amplitude of the frequency coefficients above 150 Hz decreases. These observations were more identifiable in the S1 spectra than in the S2 spectra, possibly because the S2 higher frequency components may mask subtle changes in the S2 spectra caused by heart size changes. However, when the changes in heart size are significant, as in hypertension or increased body surface area, trends in the S2 spectra can be observed.  相似文献   

6.
Although many diclinous plants have a flower size dimorphism, the causes and ecological correlates of dimorphism in flower size remain poorly understood. In this paper we quantify the frequency and distribution of flower size dimorphism in the native flora of La Réunion Island. The frequency of flower size dimorphism is lower than in a previous global study suggesting that the dimorphism may limit colonisation success. Flower size dimorphism is significantly more frequent in endemic taxa compared to indigenous taxa, a trend that is particularly evident at the species level, due to the large number of species with male flowers bigger than female flowers and is more common in species-rich lineages. These results suggest that flower size dimorphism may be associated with species divergence. The direction of dimorphism varies between dioecious and monoecious species, suggesting that the mechanisms acting on flower size variation differ in species with these different sexual systems.We thank Jacques Figier and Dominique Strasberg for their encouragement and advice and anonymous reviewers for constructive comments. The Université de La Réunion and the Conseil Régional de La Réunion provided financial support.  相似文献   

7.
SUMMARY The adaptive significance of specific sexual dimorphism is well studied. However, the evolutionary history and ontogenic origins of the dimorphism are often unknown. As dimorphism represents two phenotypes generated from relatively similar genotypes, it is of interest to understand both its evolutionary and developmental/genetic underpinnings. Here, we present the first ontogenetic examination of the eyes of philomedid ostracods (Crustacea), which exhibit extremely sexually dimorphic lateral eyes. Adult male philomedids have large compound lateral eyes, whereas females have rudimentary lateral eyes. First, we show that eye dimorphism is unlikely to be due to additional genes present on a male-specific chromosome because karyotype analysis suggests philomedids are XX/XO. We then examine the ontogeny of eye development and find that in at least two species of Euphilomedes , this dimorphism is not generated solely by differences in tissue growth rates, as has been commonly shown for sexually dimorphic characters of other species. Instead, the dimorphism appears to arise during development via tissue duplication, where a single tissue becomes two, perhaps with different developmental potentials. The second eye field is only observed in male Euphilomedes , producing most of the adult eye tissue. We point out that tissue duplication is a developmental process with evolutionary implications because novel characters could evolve via alternative modification of the duplicated fields, analogous to the origin of new genes by gene duplication and alternative modification. Depending on the evolutionary history of the duplicated field, it may have either facilitated or directly caused the observed sexual dimorphism of philomedid ostracods.  相似文献   

8.
Differences in the strength of sexual selection between males and females can lead to sexual dimorphism. Extra-pair paternity (EPP) can increase the variance in male reproductive success and hence the opportunity for sexual selection. Previous research on birds suggests that EPP drives the evolution of dimorphism in plumage colour and in body size. Because EPP increases the intensity of sexual selection in males, it should lead to increased dimorphism in species with larger or more colourful males, but decreased dimorphism in species with larger or more colourful females. We explored the covariation between EPP and sexual dimorphism in wing length and plumage colouration in 401 bird species, while controlling for other, potentially confounding variables. Wing length dimorphism was associated positively with the frequency of EPP, but also with social polygamy, sex bias in parental behaviour and body size and negatively with migration distance. The frequency of EPP was the only predictor of plumage colour dimorphism. In support of our prediction, high EPP levels were associated with sexual dichromatism, positively in species in which males are more colourful and negatively in those in which females are more colourful. Contrary to our prediction, high EPP rates were associated with increased wing length dimorphism in species with both male- and female-biased dimorphism. The results support a role for EPP in the evolution of both size and plumage colour dimorphism. The two forms of dimorphism were weakly correlated and predicted by different reproductive, social and life-history traits, suggesting an independent evolution.  相似文献   

9.
Variation in the extent of sexual dimorphism among bird species is traditionally attributed to differences in social mating system. However, there are many different forms of dimorphism among birds, and not all of them show an obvious correlation with social mating system. For example, recent work has shown that many highly polygamous species are, in fact, monomorphic, whereas many putatively monogamous species are dimorphic. In this paper we break up sexual dimorphism into subcomponents and then use comparative analyses to examine the pattern of covariation between these subcomponents and various aspects of sexual, social, and parental behaviour. Our first finding is that size dimorphism and plumage-colour dimorphism do not show the same pattern of covariation. Differences in size dimorphism are associated with variation in social mating system and sex differences in parental care, whereas differences in plumage-colour dimorphism are associated with variation in the frequency of extra-bond paternity. These results suggest that size dimorphism is associated with the sort of intrasexual competition described by traditional classifications of social mating system, whereas plumage-colour dimorphism is associated with cryptic female choice. However, when we break up plumage-colour dimorphism according to whether it is due to melanins, carotenoids or structural colours, we find that each category of plumage-colour dimorphism shows a different pattern of covariation. The correlation between overall plumage-colour dimorphism and the rate of extra-bond paternity is due to structural colours, whereas melanin-based dimorphism is associated with sex differences in parental care. The former result is particularly interesting given that new work suggests structural colours are associated with active sexual displays and the reflection of ultraviolet light.  相似文献   

10.
We present the first empirical evidence that mammalian sex-ratio deviations result from variation in adult-weight sexual dimorphism via correlated effects on blastocyst development. Two selection lines of mice exhibiting high and low sexual dimorphism in adult weight showed correlated sexual weight differences at birth and at weaning, caused by relatively decelerated growth of males in the low line from before birth. The sex ratio at birth was significantly female-biased in the low line, and significantly lower than in the highly dimorphic line. Concomitantly, blastomere numbers were at significantly higher variance in the low than in the highly dimorphic line, owing to an increased frequency of slowly growing blastocysts. Since low-dimorphism mice produced more corpora lutea and more female pups than the high-dimorphism mice, but not more males, birth sex-ratio bias most parsimoniously resulted from the loss of slowly growing male blastocysts. This is in agreement with the observation that sex-ratio skews in mammals arise when timing of uterine responsiveness (i.e. its temporally limited capacity for implantation) varies in relation to sex-specific embryonic growth rates. Hence, natural mammalian sex-ratio variation that stems from developmental asynchrony might be a by-product of natural selection for sexual dimorphism in adult weight.  相似文献   

11.
Although male ornaments may provide benefits to individuals bearing them, such structures may also entail fitness costs. Selection should favour aspects of the phenotype that act to reduce such costs, yet such compensatory traits are often ignored in studies of sexual selection. If a male ornament increases predation risk via reduced locomotor performance, then there may be selection for changes in morphological traits to compensate for behavioural or biomechanical changes in how individuals use their morphology (or both). We took a comparative approach aiming to test whether changes in wing beat frequency are evolutionarily correlated with increases in male ornamentation across stalk‐eyed fly species. Previous studies have shown that increased male eye span is evolutionarily correlated with increased wing size; thus, we tested whether there is additional compensation via increases in size‐adjusted wing beat frequency. The results obtained revealed that relative wing beat frequency is negatively related to relative eye span in males, and sexual dimorphism in wing beat frequency is negatively related to dimorphism in eye span. These findings, in addition to our finding that eye span dimorphism is positively related to aspect ratio dimorphism, suggest that male stalk‐eyed flies compensate primarily by increasing wing size and shape, which may then have resulted in the subsequent evolutionary reduction in wing beat frequency. Thus, exaggerated ornaments can result in evolutionary modifications in wing morphology, which in turn lead to adjustments in flapping kinematics, illustrating the tight envelope of trade‐offs when compensating for exaggerated ornaments. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 670–679.  相似文献   

12.
Dimorphic sexual differences in shape and body size are called sexual dimorphism and sexual size dimorphism, respectively. The degrees of both dimorphisms are considered to increase with sexual selection, represented by male–male competition. However, the degrees of the two dimorphisms often differ within a species. In some dung beetles, typical sexual shape dimorphisms are seen in male horns and other exaggerated traits, although sexual size dimorphism looks rare. We hypothesized that the evolution of this sexual shape dimorphism without sexual size dimorphism is caused by male–male competition and their crucial and sex-indiscriminate provisioning behaviors, in which parents provide the equivalent size of brood ball with each of both sons and daughters indiscriminately. As a result of individual-based model simulations, we show that parents evolve to provide each of sons and daughters with the optimal amount of resource for a son when parents do not distinguish the sex of offspring and males compete for mates. This result explains why crucial and sex-indiscriminate parental provisioning does not prevent the evolution of sexual shape dimorphism. The model result was supported by empirical data of Scarabaeidae beetles. In some dung beetles, sexual size dimorphism is absent, compared with significant sexual size dimorphism in other horned beetles, although both groups exhibit similar degrees of sexual shape dimorphism in male horns and other exaggerated traits.  相似文献   

13.
Morphological dimorphism in the mouth-opening direction ('lefty' versus 'righty') has been documented in several fish species. It has been suggested that this deflection is heritable in a Mendelian one-locus, two-allele fashion. Several population models have demonstrated that lateral dimorphism is maintained by negative frequency-dependent selection, resulting from interactions between predator and prey species. However, other mechanisms for the maintenance of lateral dimorphism have not yet been tested. Here, we found that the scale-eating cichlid fish Perissodus microlepis exhibited disassortative mating, in which reproductive pairings between lefties and righties occurred at higher than expected frequency (p<0.001). A previous study reported that a lefty-righty pairing produces a 1:1 ratio of lefty:righty young, suggesting that disassortative mating contributes to the maintenance of lateral dimorphism. A combination of disassortative mating and negative frequency-dependent selection may stabilize lateral dimorphism more than would a single mechanism.  相似文献   

14.
Gynodioecy, a genetic dimorphism of females and hermaphrodites, is pertinent to an understanding of the evolution of plant gender, mating and genetic variability. Classical models of nuclear gynodioecy attribute the maintenance of the dimorphism to frequency-dependent selection in which the female phenotype has a fitness advantage at low frequency owing to a doubled ovule fertility. Here, I analyse explicit genetic models of nuclear gynodioecy that expand on previous work by allowing partial male sterility in combination with either fixed or dynamically evolving mutational inbreeding depression. These models demonstrate that partial male sterility causes fitness underdominance at the mating locus, which can prevent the spread of females. However, if partial male sterility is compensated by a change in selfing rate, overdominance at the mating locus can cause the spread of females. Overdominance at introduction of the male sterility allele can be caused by high inbreeding depression and a lower selfing rate in the heterozygote, by purging of mutations by a higher selfing rate in the heterozygote, and by low inbreeding depression and a higher selfing rate in the heterozygote. These processes might be of general importance in the maintenance of mating polymorphisms in plants.  相似文献   

15.
Insight into the ontogeny of sexual dimorphism is important to our understanding of life history, ecology, and evolution in primates. This study applied a three-dimensional method, Euclidean Distance Matrix Analysis, to investigate sexual dimorphism and its diachronic changes in rhesus macaque (Macaca mulatta) skulls. Twenty-one landmarks in four functional areas of the craniofacial skeleton were digitized from macaques of known age and sex from the Cayo Santiago collections. Then, a series of mean form matrices, form difference matrices, and growth matrices were computed to demonstrate growth curves, rates and duration of growth, and sexual dimorphism within the neurocranium, basicranium, palate, and face. The inclusion of fully adult animals revealed a full profile of sexual dimorphism. Additionally, we demonstrate for the first time diachronic change in adult sexual dimorphism caused by extended growth in adult females. A quicker growth rate in males from ages 2 to 8 was offset by a longer duration of growth in adult females that resulted in diminished dimorphism between the ages of 8 and 15. Four functional areas showed different sex-specific growth patterns, and the rate and duration of growth in the anterior facial skeleton contributed most to the changing profiles of sexual dimorphism. The late maturation in size of the female facial skeleton corresponds to later and less complete fusion of facial sutures. The prolongation of growth in females is hypothesized to be an evolutionary response to high levels of intrasexual competition, as is found in other primate species such as common chimpanzees with similar colony structure and reproductive behavior. Further investigation is required to determine (1) if this phenomenon observed in craniofacial skeletons is linked to sexual dimorphism in body size, and (2) whether this diachronic change in sexual dimorphism is species specific. The changing profile of sexual dimorphism in adult rhesus macaques suggests caution in studying sexual dimorphism in fossil primate and human forms.  相似文献   

16.
The South American weakly-electric knifefish (Apteronotidae) produce highly diverse and readily quantifiable electrocommunication signals. The electric organ discharge frequency (EODf), and EOD modulations (chirps and gradual frequency rises (GFRs)), vary dramatically across sexes and species, presenting an ideal opportunity to examine the proximate and ultimate bases of sexually dimorphic behavior. We complemented previous studies on the sexual dimorphism of apteronotid communication signals by investigating electric signal features and their hormonal correlates in Apteronotus bonapartii, a species which exhibits strong sexual dimorphism in snout morphology. Electrocommunication signals were evoked and recorded using a playback paradigm, and were analyzed for signal features including EOD frequency and the structure of EOD modulations. To investigate the androgenic correlates of sexually dimorphic EOD signals, we measured plasma concentrations of testosterone and 11-ketotestosterone. A. bonapartii responded robustly to stimulus playbacks. EODf was sexually monomorphic, and males and females produced chirps with similar durations and amounts of frequency modulation. However, males were more likely than females to produce chirps with multiple frequency peaks. Sexual dimorphism in apteronotid electrocommunication signals appears to be highly evolutionarily labile. Extensive interspecific variation in the magnitude and direction of sex differences in EODf and in different aspects of chirp structure suggest that chirp signals may be an important locus of evolutionary change within the clade. The weakly-electric fish represent a rich source of data for understanding the selective pressures that shape, and the neuroendocrine mechanisms that underlie, diversity in the sexual dimorphism of behavior.  相似文献   

17.
Odontometric, dietary, and body weight data were collected for a sample of 29 cercopithecoid species. Each species was assigned to one of three diet classes (frugivore, folivore, and omnivore) , and indices were constructed to estimate the extent of sexual dimorphism in body weight, postcanine area and incisor width in each of the species. Analysis proceeded by means of the analysis of covariance with the dental dimorphism indices as the dependent variables. Body weight dimorphism was not significantly related to either measure of dental dimorphism across the sample, and an analysis by diet alone revealed that omnivores show significantly higher dental dimorphism than do either of the other two diet classes. The relationship between this result and theories of sexual subniche differentiation is discussed.  相似文献   

18.
We artificially selected for body size in Drosophila melanogaster to test Lande's quantitative genetic model for the evolution of sexual size dimorphism. Thorax width was used as an estimator of body size. Selection was maintained for 21 generations in both directions on males only, females only, or both sexes simultaneously. The correlated response of sexual size dimorphism in each selection regime was compared to the response predicted by four variants of the model, each of which differed only in assumptions about input parameters. Body size responded well to selection, but the correlated response of sexual size dimorphism was weaker than that predicted by any of the variants. Dimorphism decreased in most selection lines, contrary to the model predictions. We suggest that selection on body size acts primarily on growth trajectories. Changes in dimorphism are caused by the fact that male and female growth trajectories are not parallel and termination of growth at different points along the curves results in dimorphism levels that are difficult to predict without detailed knowledge of growth parameters. This may also explain many of the inconsistent results in dimorphism changes seen in earlier selection experiments.  相似文献   

19.
The motor mounting patterns of male and female New Zealand white rabbits were analyzed by means of an accelerometric technique and frequency analysis. Clear behavioral dimorphism was noted in the motor mounting pattern. Pelvic thrusting by males was periodic while that performed by females lacked rhythmicity. Thrusting in males was more vigorous than in females. Ovariectomy markedly decreased the incidence of mounting behavior. Testosterone propionate (TP, 5 mg daily for 1 month), restored mounting in all ovariectomized rabbits. TP stimulated the vigor of thrusting and induced a rhythmic mounting pattern in many cases similar to that displayed by intact male rabbits, i.e., thrusting frequency 13-16 per second. Estradiol benzoate (10 micrograms daily for 1 month), elicited mounting in three of the seven rabbits tested. Pelvic thrusting in these rabbits was often highly synchronous showing a frequency higher (18 to 21 thrusts per second) than that displayed by male rabbits. The results suggest the following conclusions: (a) the behavioral dimorphism in mounting observed in rabbits is due to variations in the secretion of sex steroids by the adult gonads rather than to differences in the organization of the neural substrate of mounting; (b) gonadal steroids influence directly or indirectly the neural structures involved in some characteristics of pelvic thrusting, i.e., rhythmicity and vigor.  相似文献   

20.
Recent work on birds suggests that certain morphological differences between the sexes may have evolved as an indirect consequence of sexual selection because they offset the cost of bearing extravagant ornaments used for fighting or mate attraction. For example, long-tailed male sunbirds and widowbirds also have longer wings than females, perhaps to compensate for the aerodynamic costs of tail elaboration. We used comparative data from 57 species to investigate whether this link between sexual dimorphism in wing and tail length is widespread among long-tailed birds. We found that within long-tailed families, variation in the extent of tail dimorphism was associated with corresponding variation in wing dimorphism. One nonfunctional explanation of this result is simply that the growth of wings and tails is controlled by a common developmental mechanism, such that long-tailed individuals inevitably grow long wings as well. However, this hypothesis cannot account for a second pattern in our data set: as predicted by aerodynamic theory, we found that, comparing across long-tailed families, sexual dimorphism in wing length varied with tail shape as well as with sex differences in tail length. Thus, wing dimorphism was generally greater in species with aerodynamically costly graduated tails than in birds with cheaper, streamer-shaped tails. This result was not caused by confounding phylogenetic effects, because it persisted when phylogeny was controlled for, using an independent comparisons method. Our findings therefore confirm that certain aspects of sexual dimorphism may sometimes have evolved through selection for traits that reduce the costs of elaborate sexually selected characters. We suggest that future work aimed at understanding sexual selection by investigating patterns of sexual dimorphism should attempt to differentiate between the direct and indirect consequences of sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号