首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We isolated and characterized the gene encoding human transglutaminase (TG)(X) (TGM5) and mapped it to the 15q15.2 region of chromosome 15 by fluorescence in situ hybridization. The gene consists of 13 exons separated by 12 introns and spans about 35 kilobases. Further sequence analysis and mapping showed that this locus contained three transglutaminase genes arranged in tandem: EPB42 (band 4.2 protein), TGM5, and a novel gene (TGM7). A full-length cDNA for the novel transglutaminase (TG(Z)) was obtained by anchored polymerase chain reaction. The deduced amino acid sequence encoded a protein with 710 amino acids and a molecular mass of 80 kDa. Northern blotting showed that the three genes are differentially expressed in human tissues. Band 4.2 protein expression was associated with hematopoiesis, whereas TG(X) and TG(Z) showed widespread expression in different tissues. Interestingly, the chromosomal segment containing the human TGM5, TGM7, and EPB42 genes and the segment containing the genes encoding TG(C),TG(E), and another novel gene (TGM6) on chromosome 20q11 are in mouse all found on distal chromosome 2 as determined by radiation hybrid mapping. This finding suggests that in evolution these six genes arose from local duplication of a single gene and subsequent redistribution to two distinct chromosomes in the human genome.  相似文献   

2.
Structure and organization of the human transglutaminase 1 gene.   总被引:9,自引:0,他引:9  
Membrane-associated transglutaminases (TGase1) have recently been found to be common in mammalian cells, but it is not clear whether these derive from the same or different genes. In order to determine the complexity of this system, we have isolated and characterized the human gene (TGM1). The gene of 14,133 base pairs was found to contain 15 exons spliced by 14 introns. Interestingly, the positions of these introns have been conserved in comparison with the genes of two other transglutaminase-like activities described in the literature, but the TGM1 gene is by far the smallest characterized to date because its introns are relatively smaller. On the other hand, the TGase1 enzyme is the largest known transglutaminase (about 90 kDa), apparently because its gene acquired tracts that encode additional sequences on its amino and carboxyl termini that confer its unique properties. Southern blot analyses of total human genomic DNA cut with several restriction enzymes reveal only one band. Use of human-rodent cell hybrid panels and chromosomal in situ hybridization with biotin-labeled probes revealed that the human TGM1 gene maps to chromosome position 14q11.2-13. Such data suggest there is a single gene copy per haploid human genome. Comparisons of sequence identities and homologies indicate that the transglutaminase family of genes arose by duplications and subsequent divergent evolution from a common ancestor but later became scattered in the human genome. Although our present Southern blot and chromosomal localization studies revealed no restriction fragment length polymorphisms, comparisons of published sequences and our genomic clone indicate there are two sequence variants for TGase1 within the human population. The rare smaller variant contains a two-nucleotide deletion near the 5'-end, uses an alternate initiation codon, and differs from the common larger variant only in the first 15 amino acids. Furthermore, the DNA sequences of intron 14 possess several tracts of dinucleotide repeats that by polymerase chain reaction analysis show wide size polymorphism within the human population. Accordingly, this gene system constitutes a useful polymorphic marker for genetic linkage analyses.  相似文献   

3.
4.
Comparative genomics is a superior way to identify phylogenetically conserved features like genes or regions involved in gene regulation. The comparison of extended orthologous chromosomal regions should also reveal other characteristic traits essential for chromosome or gene function. In the present study we have sequenced and compared a region of conserved synteny from human chromosome 11p15.3 and mouse chromosome 7. In human, this region is known to contain several genes involved in the development of various disorders like Beckwith-Wiedemann overgrowth syndrome and other tumor diseases. Furthermore, in the neighboring chromosome region 11p15.5 extensive imprinting of genes has been reported which might extend to region 11p15.3. The analysis of approximately 730 kb in human and 620 kb in mouse led to the identification of eleven genes. All putative genes found in the mouse DNA were also present in the same order and orientation in the human chromosome. However, in the human DNA one putative gene of unknown function could be identified which is not present in the orthologous position of the mouse chromosome. The sequence similarity between human and mouse is higher in transcribed and exon regions than in non-transcribed segments. Dot plot analysis, however, reveals a surprisingly well-conserved sequence similarity over the entire analyzed region. In particular, the positions of CpG islands, short regions of very high GC content in the 5' region of putative genes, are similar in human and mouse. With respect to base composition, two distinct segments of significantly different GC content exist as well in human as in the mouse. With a GC content of 45% the one segment would correspond to "isochore H1" and the other segment (39% GC in human, 40% GC in mouse) to "isochore L1/L2". The gene density (one gene per 66 kb) is slightly higher than the average calculated for the complete human genome (one gene per 90 kb). The comparison of the number and distribution of repetitive elements shows that the proportion of human DNA made up by interspersed repeats (43.8%) is significantly higher than in the corresponding mouse DNA (30.1%). This partly explains why the human DNA is longer between the landmark genes used to define the orthologous positions in human and mouse.  相似文献   

5.
R W Elliott  B K Lee  E M Eicher 《Genomics》1990,8(3):591-594
A DNA fragment size variant for the growth hormone gene, Gh, has been identified among inbred strains of mice. The inbred strains SM/J and CAST/Ei carry the less frequent allele Ghb and 11 other strains carry the Gha allele. Segregation analysis of data from two crosses involving SM/J and NZB/BINJ and a cross involving BALB/cJ and CAST/Ei confirmed the assignment of Gh to mouse chromosome 11 and placed the locus 2.6 +/- 1.8 map units distal to Erba (avian erythroblastosis oncogene A), a position consistent with the assignment of the Gh locus to the q22-q24 region of chromosome 17 on the human map. Segregation analysis also refined the location of Sparc (secreted acidic cysteine-rich glycoprotein) on mouse chromosome 11 to a position 16.7 +/- 4.2 map units proximal to Evi-2 (ecotropic viral integration site 2).  相似文献   

6.
7.
8.
We report here the full coding sequence of a novel mouse putative membrane-associated mucin containing three extracellular EGF-like motifs and a mucin-like domain consisting of at least 20 tandem repeats of 124-126 amino acids. Screening a cosmid and a BAC libraries allowed to isolate several genomic clones. Genomic and cDNA sequence comparisons showed that the gene consists of 25 exons and 24 introns covering a genomic region of approximately 52 kb. The first intron is approximately 16 kb in length and is followed by an unusually large exon (approximately 9.5 kb) encoding Ser/Thr-rich tandemly repeated sequences. Radiation hybrid mapping localized this new gene to a mouse region of chromosome 16, which is the orthologous region of human chromosome 3q29 encompassing the large membrane-anchored mucin MUC4. Contigs analysis of the Human Genome Project did not reveal any other mucin on chromosome 3q29 and, interestingly, our analysis allowed the determination of the genomic organization of the human MUC4 and showed that its exon/intron structure is identical to that of the mouse gene we cloned. Furthermore, the human MUC4 shares considerable homologies with the mouse gene. Based on these data, we concluded that we isolated the mouse ortholog of MUC4 we propose as Muc4. Expression studies showed that Muc4 is ubiquitous like SMC and MUC4, with highest levels of expression in trachea and intestinal tract.  相似文献   

9.
10.
Epidermis-type lipoxygenases, a distinct subclass within the multigene family of mammalian lipoxygenases (LOX), comprise recently discovered novel isoenzymes isolated from human and mouse skin including human 15-LOX-2, human and mouse 12R-LOX, mouse 8S-LOX, and mouse e-LOX-3. We have isolated the human homologue of mouse e-LOX-3. The cDNA of 3362 bp encodes a 711-amino-acid protein displaying 89% sequence identity with the mouse protein and exhibiting the same unusual structural feature, i.e., an extra segment of 41 amino acids, which can be located beyond the N-terminal beta-barrel domain at the surface of the C-terminal catalytic domain. The gene encoding e-LOX-3, ALOXE3, was found to be part of a gene cluster of approximately 100 kb on human chromosome 17p13.1 containing in addition the 12R-LOX gene, ALOX12B, the 15-LOX-2 gene, ALOX15B, and a novel 15-LOX pseudogene, ALOX15P. ALOXE3 and ALOX12B are arranged in a head-to-tail fashion separated by 8.5 kb. The genes are split into 15 exons and 14 introns spanning 22 and 15 kb, respectively. ALOX15P was found on the opposite DNA strand directly adjacent to the 3'-untranslated region of ALOX12B. ALOX15B is located in the same orientation 25 kb downstream of ALOX12B, and is composed of 14 exons and 13 introns spanning a total of 9.7 kb of genomic sequence. RT-PCR analysis demonstrated a predominant expression of ALOXE3, ALOX12B, and ALOX15B in skin.  相似文献   

11.
We have previously identified novel members of the pentraxin family (neuronal pentraxin 1 and 2) that are expressed in the nervous system. Neuronal pentraxin 1 (NP1) was identified as a rat protein that may mediate the uptake of synaptic material and the presynaptic snake venom toxin, taipoxin. NP2 was identified as a separate gene discovered by screening for a human homolog for NP1. Here, we report human cDNA and mouse genomic DNA sequences for NP1 (gene symbol NPTX1). Human NP1 and mouse NP1 show 95 and 99% amino acid identity, respectively, with rat NP1 and conserve all potential glycosylation sites. Like rat NP1, human NP1 message is large (6.5 kb) and is exclusively localized to the nervous system. The mouse NP1 gene is 13 kb in length and contains four introns that break the coding sequence of NP1 in the same positions as the introns of the human NP2 gene. The human and mouse NP1 genes are localized to chromosome 17q25.1–q25.2 and chromosome 11e2–e1.3, respectively. These data demonstrate the existence of a separate family of pentraxin proteins that are expressed in the human brain and other tissues and that may play important roles in the uptake of extracellular material.  相似文献   

12.
The gene encoding the mouse analogue of the human complement regulator CD59 was cloned using a combination of long range PCR and genomic library screening. Sequence obtained showed that its genomic structure closely resembled that of the human CD59 gene, comprising 4 exons, each separated by a long intron region. The sizes of introns and exons were comparable to those of the human gene with the exception of the third intron which is 2.5 kb in the mouse compared to 7 kb in the human gene. All exon/intron boundaries conformed to the GT-AG rules for splicing. Radiation hybrid mapping localised mouse Cd59 between D2Mit333 and D2Mit127 on chromosome 2, a region homologous with human chromosome 11p13 where the human CD59 gene is localised. These data have permitted the construction of a gene targeting vector for the generation of transgenic mice deficient in CD59.  相似文献   

13.
The transglutaminase 1 gene (TGM1) encodes an enzyme necessary for cross-linking the structural proteins that form the cornified envelope, an essential component of the outermost layer of the skin, the stratum corneum. Reported here is the complete coding region of canine TGM1, its chromosome localization, and its map position in the integrated canine linkage-radiation hybrid map. Canine TGM1 consists of 2,448 nucleotides distributed over 15 exons. The nucleotide sequence has 90% identity to human TGM1. The deduced canine TGM1 protein is 816 amino acids long and is 92% identical to human TGM1. Using fluorescence in situ hybridization, we localized canine TGM1 to dog (Canis familiaris) chromosome 8 (CFA 8q). Canine TGM1 localized to CFA 8 on the integrated linkage-radiation hybrid map in the interval FH2149-MYH7. Characterizing the coding region of canine TGM1 is a first step in examining the role of this enzyme in normal and defective cornification in the dog.  相似文献   

14.
15.
A 140-kb pig DNA fragment containing the whey acidic protein (WAP) gene cloned in a bacterial artificial chromosome (BAC344H5) has been shown to contain all of the cis-elements necessary for position-independent, copy-dependent and tissue-specific expression in transgenic mice. The insert from this BAC was sequenced. This revealed the presence of two other genes with quite different expression patterns in pig tissues and in transfected HC11 mouse mammary cells. The RAMP3 gene is located 15 kb upstream of the WAP gene in reverse orientation. The CPR2 gene is located 5 kb downstream of the WAP gene in the same orientation. The same locus organization was found in the human genome. The region between RAMP3 and CPR2 in the human genome contains a WAP gene-like sequence with several points of mutation which may account for the absence of WAP from human milk.  相似文献   

16.
Lund J  Chen F  Hua A  Roe B  Budarf M  Emanuel BS  Reeves RH 《Genomics》2000,63(3):374-383
Mouse genomic DNA sequence extending 634 kb on proximal mouse chromosome 16 was compared to the corresponding human sequence from chromosome 22q11.2. Haploinsufficiency for this region results in velocardiofacial syndrome (VCFS) in humans. The mouse region is rearranged into three conserved blocks relative to human, but gene content and position are highly conserved within these blocks. Examination of the boundaries of one of these blocks suggested that the evolutionary chromosomal rearrangement occurred in the mouse lineage, resulting in inactivation of the mouse orthologue of ZNF74. Sequence analysis identified 21 genes and 15 ESTs. These include 2 novel genes, Srec2 and Cals2, and previously undescribed splice variants of several other genes. Exon discovery was carried out using GRAIL2, MZEF, or comparative analysis across 491 kb of conserved mouse and human sequence. Sequence comparison was highly effective, identifying every gene and nearly every exon without the high frequency of false-positive predictions seen when algorithmic methods were used alone. In combination, these procedures identified every gene with no false-positive predictions. Comparative sequence analysis also revealed regions of extensive conservation among noncoding sequences, accounting for 6% of the sequence. A library of such sequences has been established to form a resource for generalized studies of regulatory and structural elements.  相似文献   

17.
18.
Band 4.2, which plays an important but poorly understood role in erythrocyte function and survival, is a major component of erythrocyte membranes. Recently, it has been shown that the gene for murine protein band 4.2 colocalizes on chromosome 2 with the murine pallid mutation, which affects the formation or function of intracellular storage granules in melanocytes and platelets and lysosomes in kidney. As a first step in identifying the mutation responsible for the pallid phenotype, we have sequenced the entire normal murine band 4.2 gene. Our results show that the gene for murine band 4.2 is approximately 22 kb in size, with 13 exons and 12 intervening introns. The organization of the mouse band 4.2 gene is identical to that of the human band 4.2 gene and similar to that of the genes for the transglutaminase enzymes, reiterating the membership of protein band 4.2 in the transglutaminase gene superfamily. We also present 3.5 kb of normal murine erythroid band 4.2 cDNA sequence containing an open reading frame of 2073 bp and coding for 691 amino acids. This is the same size as the human erythrocyte protein, with which the murine protein shares a 72% amino acid identity.  相似文献   

19.
Human epidermal type I transglutaminase coexists in keratinocytes with another cross-linking enzyme, tissue type II transglutaminase. There are at least five different forms of the enzyme in mammals. Gene mapping studies allowed us to determine whether the different transglutaminases are products of the same gene or separate genes. The gene encoding factor XIII subunit a transglutaminase (F13A1) was previously assigned to human chromosome 6, p24----p25. We demonstrate using somatic cell hybrids that the human epidermal type I transglutaminase gene (gene symbol is designated TGM1) is located on human chromosome 14, providing evidence that at least two human transglutaminases are encoded by separate genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号