首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clustering of main orthologs for multiple genomes   总被引:1,自引:0,他引:1  
The identification of orthologous genes shared by multiple genomes is critical for both functional and evolutionary studies in comparative genomics. While it is usually done by sequence similarity search and reconciled tree construction in practice, recently a new combinatorial approach and high-throughput system MSOAR for ortholog identification between closely related genomes based on genome rearrangement and gene duplication has been proposed in Fu et al. MSOAR assumes that orthologous genes correspond to each other in the most parsimonious evolutionary scenario, minimizing the number of genome rearrangement and (postspeciation) gene duplication events. However, the parsimony approach used by MSOAR limits it to pairwise genome comparisons. In this paper, we extend MSOAR to multiple (closely related) genomes and propose an ortholog clustering method, called MultiMSOAR, to infer main orthologs in multiple genomes. As a preliminary experiment, we apply MultiMSOAR to rat, mouse, and human genomes, and validate our results using gene annotations and gene function classifications in the public databases. We further compare our results to the ortholog clusters predicted by MultiParanoid, which is an extension of the well-known program InParanoid for pairwise genome comparisons. The comparison reveals that MultiMSOAR gives more detailed and accurate orthology information, since it can effectively distinguish main orthologs from inparalogs.  相似文献   

2.
Possvm (Phylogenetic Ortholog Sorting with Species oVerlap and MCL [Markov clustering algorithm]) is a tool that automates the process of identifying clusters of orthologous genes from precomputed phylogenetic trees and classifying gene families. It identifies orthology relationships between genes using the species overlap algorithm to infer taxonomic information from the gene tree topology, and then uses the MCL to identify orthology clusters and provide annotated gene families. Our benchmarking shows that this approach, when provided with accurate phylogenies, is able to identify manually curated orthogroups with very high precision and recall. Overall, Possvm automates the routine process of gene tree inspection and annotation in a highly interpretable manner, and provides reusable outputs and phylogeny-aware gene annotations that can be used to inform comparative genomics and gene family evolution analyses.  相似文献   

3.
MOTIVATION: Phylogenomics integrates the vast amount of phylogenetic information contained in complete genome sequences, and is rapidly becoming the standard for reliably inferring species phylogenies. There are, however, fundamental differences between the ways in which phylogenomic approaches like gene content, superalignment, superdistance and supertree integrate the phylogenetic information from separate orthologous groups. Furthermore, they all depend on the method by which the orthologous groups are initially determined. Here, we systematically compare these four phylogenomic approaches, in parallel with three approaches for large-scale orthology determination: pairwise orthology, cluster orthology and tree-based orthology. RESULTS: Including various phylogenetic methods, we apply a total of 54 fully automated phylogenomic procedures to the fungi, the eukaryotic clade with the largest number of sequenced genomes, for which we retrieved a golden standard phylogeny from the literature. Phylogenomic trees based on gene content show, relative to the other methods, a bias in the tree topology that parallels convergence in lifestyle among the species compared, indicating convergence in gene content. CONCLUSIONS: Complete genomes are no guarantee for good or even consistent phylogenies. However, the large amounts of data in genomes enable us to carefully select the data most suitable for phylogenomic inference. In terms of performance, the superalignment approach, combined with restrictive orthology, is the most successful in recovering a fungal phylogeny that agrees with current taxonomic views, and allows us to obtain a high-resolution phylogeny. We provide solid support for what has grown to be a common practice in phylogenomics during its advance in recent years. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

4.
MOTIVATION: The complete sequencing of many genomes has made it possible to identify orthologous genes descending from a common ancestor. However, reconstruction of evolutionary history over long time periods faces many challenges due to gene duplications and losses. Identification of orthologous groups shared by multiple proteomes therefore becomes a clustering problem in which an optimal compromise between conflicting evidences needs to be found. RESULTS: Here we present a new proteome-scale analysis program called MultiParanoid that can automatically find orthology relationships between proteins in multiple proteomes. The software is an extension of the InParanoid program that identifies orthologs and inparalogs in pairwise proteome comparisons. MultiParanoid applies a clustering algorithm to merge multiple pairwise ortholog groups from InParanoid into multi-species ortholog groups. To avoid outparalogs in the same cluster, MultiParanoid only combines species that share the same last ancestor. To validate the clustering technique, we compared the results to a reference set obtained by manual phylogenetic analysis. We further compared the results to ortholog groups in KOGs and OrthoMCL, which revealed that MultiParanoid produces substantially fewer outparalogs than these resources. AVAILABILITY: MultiParanoid is a freely available standalone program that enables efficient orthology analysis much needed in the post-genomic era. A web-based service providing access to the original datasets, the resulting groups of orthologs, and the source code of the program can be found at http://multiparanoid.cgb.ki.se.  相似文献   

5.
MOTIVATION: The determination of gene orthology is a prerequisite for mining and utilizing the rapidly increasing amount of sequence data for genome-scale phylogenetics and comparative genomic studies. Until now, most researchers use pairwise distance comparisons algorithms, such as BLAST, COG, RBH, RSD and INPARANOID, to determine gene orthology. In contrast, orthology determination within a character-based phylogenetic framework has not been utilized on a genomic scale owing to the lack of efficiency and automation. RESULTS: We have developed OrthologID, a Web application that automates the labor-intensive procedures of gene orthology determination within a character-based phylogenetic framework, thus making character-based orthology determination on a genomic scale possible. In addition to generating gene family trees and determining orthologous gene sets for complete genomes, OrthologID can also identify diagnostic characters that define each orthologous gene set, as well as diagnostic characters that are responsible for classifying query sequences from other genomes into specific orthology groups. The OrthologID database currently includes several complete plant genomes, including Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, as well as a unicellular outgroup, Chlamydomonas reinhardtii. To improve the general utility of OrthologID beyond plant species, we plan to expand our sequence database to include the fully sequenced genomes of prokaryotes and other non-plant eukaryotes. AVAILABILITY: http://nypg.bio.nyu.edu/orthologid/  相似文献   

6.
Accurate inference of orthologous genes is a pre-requisite for most comparative genomics studies, and is also important for functional annotation of new genomes. Identification of orthologous gene sets typically involves phylogenetic tree analysis, heuristic algorithms based on sequence conservation, synteny analysis, or some combination of these approaches. The most direct tree-based methods typically rely on the comparison of an individual gene tree with a species tree. Once the two trees are accurately constructed, orthologs are straightforwardly identified by the definition of orthology as those homologs that are related by speciation, rather than gene duplication, at their most recent point of origin. Although ideal for the purpose of orthology identification in principle, phylogenetic trees are computationally expensive to construct for large numbers of genes and genomes, and they often contain errors, especially at large evolutionary distances. Moreover, in many organisms, in particular prokaryotes and viruses, evolution does not appear to have followed a simple 'tree-like' mode, which makes conventional tree reconciliation inapplicable. Other, heuristic methods identify probable orthologs as the closest homologous pairs or groups of genes in a set of organisms. These approaches are faster and easier to automate than tree-based methods, with efficient implementations provided by graph-theoretical algorithms enabling comparisons of thousands of genomes. Comparisons of these two approaches show that, despite conceptual differences, they produce similar sets of orthologs, especially at short evolutionary distances. Synteny also can aid in identification of orthologs. Often, tree-based, sequence similarity- and synteny-based approaches can be combined into flexible hybrid methods.  相似文献   

7.

Background  

We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community.  相似文献   

8.
We previously reported two graph algorithms for analysis of genomic information: a graph comparison algorithm to detect locally similar regions called correlated clusters and an algorithm to find a graph feature called P-quasi complete linkage. Based on these algorithms we have developed an automatic procedure to detect conserved gene clusters and align orthologous gene orders in multiple genomes. In the first step, the graph comparison is applied to pairwise genome comparisons, where the genome is considered as a one-dimensionally connected graph with genes as its nodes, and correlated clusters of genes that share sequence similarities are identified. In the next step, the P-quasi complete linkage analysis is applied to grouping of related clusters and conserved gene clusters in multiple genomes are identified. In the last step, orthologous relations of genes are established among each conserved cluster. We analyzed 17 completely sequenced microbial genomes and obtained 2313 clusters when the completeness parameter P was 40%. About one quarter contained at least two genes that appeared in the metabolic and regulatory pathways in the KEGG database. This collection of conserved gene clusters is used to refine and augment ortholog group tables in KEGG and also to define ortholog identifiers as an extension of EC numbers.  相似文献   

9.
10.
Orthology relations can be used to transfer annotations from one gene(or protein) to another. Hence, detecting orthology relations has become an important task in the post-genomic era. Various genomic events, such as duplication and horizontal gene transfer, can cause erroneous assignment of orthology relations. In closely-related species, gene neighborhood information can be used to resolve many ambiguities in orthology inference. Here we present Ortho GNC, a software for accurately predicting pairwise orthology relations based on gene neighborhood conservation.Analyses on simulated and real data reveal the high accuracy of Ortho GNC. In addition to orthology detection, Ortho GNC can be employed to investigate the conservation of genomic context among potential orthologs detected by other methods. Ortho GNC is freely available online at http://bs.ipm.ir/softwares/orthognc and http://tinyurl.com/ortho GNC.  相似文献   

11.
In comparative genomics, differences or similarities of gene orders are determined to predict functional relations of genes or phylogenetic relations of genomes. For this purpose, various combinatorial models can be used to specify gene clusters--groups of genes that are co-located in a set of genomes. Several approaches have been proposed to reconstruct putative ancestral gene clusters based on the gene order of contemporary species. One prevalent and natural reconstruction criterion is consistency: For a set of reconstructed gene clusters, there should exist a gene order that comprises all given clusters. For permutation-based gene cluster models, efficient methods exist to verify this condition. In this article, we discuss the consistency problem for different gene cluster models on sequences with restricted gene multiplicities. Our results range from linear-time algorithms for the simple model of adjacencies to NP-completeness proofs for more complex models like common intervals.  相似文献   

12.
We present a method for automatically extracting groups of orthologous genes from a large set of genomes by a new clustering algorithm on a weighted multipartite graph. The method assigns a score to an arbitrary subset of genes from multiple genomes to assess the orthologous relationships between genes in the subset. This score is computed using sequence similarities between the member genes and the phylogenetic relationship between the corresponding genomes. An ortholog cluster is found as the subset with the highest score, so ortholog clustering is formulated as a combinatorial optimization problem. The algorithm for finding an ortholog cluster runs in time O(|E| + |V| log |V|), where V and E are the sets of vertices and edges, respectively, in the graph. However, if we discretize the similarity scores into a constant number of bins, the runtime improves to O(|E| + |V|). The proposed method was applied to seven complete eukaryote genomes on which the manually curated database of eukaryotic ortholog clusters, KOG, is constructed. A comparison of our results with the manually curated ortholog clusters shows that our clusters are well correlated with the existing clusters  相似文献   

13.
Orthology is a powerful refinement of homology that allows us to describe more precisely the evolution of genomes and understand the function of the genes they contain. However, because orthology is not concerned with genomic position, it is limited in its ability to describe genes that are likely to have equivalent roles in different genomes. Because of this limitation, the concept of 'positional orthology' has emerged, which describes the relation between orthologous genes that retain their ancestral genomic positions. In this review, we formally define this concept, for which we introduce the shorter term 'toporthology', with respect to the evolutionary events experienced by a gene's ancestors. Through a discussion of recent studies on the role of genomic context in gene evolution, we show that the distinction between orthology and toporthology is biologically significant. We then review a number of orthology prediction methods that take genomic context into account and thus that may be used to infer the important relation of toporthology.  相似文献   

14.
An automated comparative analysis of 17 complete microbial genomes   总被引:3,自引:0,他引:3  
MOTIVATION: As sequenced genomes become larger and sequencing becomes faster, there is a need to develop accurate automated genome comparison techniques and databases to facilitate derivation of genome functionality; identification of enzymes, putative operons and metabolic pathways; and to derive phylogenetic classification of microbes. RESULTS: This paper extends an automated pair-wise genome comparison technique (Bansal et al., Math. Model. Sci. Comput., 9, 1-23, 1998, Bansal and Bork, in First International Workshop of Declarative Languages, Springer, pp. 275-289, 1999) used to identify orthologs and gene groups to derive orthologous genes in a group of genomes and to identify genes with conserved functionality. Seventeen microbial genomes archived at ftp://ncbi.nlm.nih.gov/genbank/genomes have been compared using the automated technique. Data related to orthologs, gene groups, gene duplication, gene fusion, orthologs with conserved functionality, and genes specifically orthologous to Escherichia coli and pathogens has been presented and analyzed. AVAILABILITY: A prototype database is available at ftp://www.mcs.kent.edu/arvind/intellibio / orthos.html. The software is free for academic research under an academic license. The detailed database for every microbial genome in NCBI is commercially available through intellibio software and consultancy corporation (Web site: http://www.mcs.kent.edu/?rvind/intellibio . html). CONTACT: arvind@mcs.kent.edu.  相似文献   

15.

Background

Phyletic patterns denote the presence and absence of orthologous genes in completely sequenced genomes and are used to infer functional links between genes, on the assumption that genes involved in the same pathway or functional system are co-inherited by the same set of genomes. However, this basic premise has not been quantitatively tested, and the limits of applicability of the phyletic-pattern method remain unknown.

Results

We characterized a hierarchy of 3,688 phyletic patterns encompassing more than 5,000 known protein-coding genes from 66 complete microbial genomes, using different distances, clustering algorithms, and measures of cluster quality. The most sensitive set of parameters recovered 223 clusters, each consisting of genes that belong to the same metabolic pathway or functional system. Fifty-six clusters included unexpected genes with plausible functional links to the rest of the cluster. Only a small percentage of known pathways and multiprotein complexes are co-inherited as one cluster; most are split into many clusters, indicating that gene loss and displacement has occurred in the evolution of most pathways.

Conclusions

Phyletic patterns of functionally linked genes are perturbed by differential gains, losses and displacements of orthologous genes in different species, reflecting the high plasticity of microbial genomes. Groups of genes that are co-inherited can, however, be recovered by hierarchical clustering, and may represent elementary functional modules of cellular metabolism. The phyletic patterns approach alone can confidently predict the functional linkages for about 24% of the entire data set.  相似文献   

16.
Shi G  Peng MC  Jiang T 《PloS one》2011,6(6):e20892
The identification of orthologous genes shared by multiple genomes plays an important role in evolutionary studies and gene functional analyses. Based on a recently developed accurate tool, called MSOAR 2.0, for ortholog assignment between a pair of closely related genomes based on genome rearrangement, we present a new system MultiMSOAR 2.0, to identify ortholog groups among multiple genomes in this paper. In the system, we construct gene families for all the genomes using sequence similarity search and clustering, run MSOAR 2.0 for all pairs of genomes to obtain the pairwise orthology relationship, and partition each gene family into a set of disjoint sets of orthologous genes (called super ortholog groups or SOGs) such that each SOG contains at most one gene from each genome. For each such SOG, we label the leaves of the species tree using 1 or 0 to indicate if the SOG contains a gene from the corresponding species or not. The resulting tree is called a tree of ortholog groups (or TOGs). We then label the internal nodes of each TOG based on the parsimony principle and some biological constraints. Ortholog groups are finally identified from each fully labeled TOG. In comparison with a popular tool MultiParanoid on simulated data, MultiMSOAR 2.0 shows significantly higher prediction accuracy. It also outperforms MultiParanoid, the Roundup multi-ortholog repository and the Ensembl ortholog database in real data experiments using gene symbols as a validation tool. In addition to ortholog group identification, MultiMSOAR 2.0 also provides information about gene births, duplications and losses in evolution, which may be of independent biological interest. Our experiments on simulated data demonstrate that MultiMSOAR 2.0 is able to infer these evolutionary events much more accurately than a well-known software tool Notung. The software MultiMSOAR 2.0 is available to the public for free.  相似文献   

17.
The order of genes in genomes provides extensive information. In comparative genomics, differences or similarities of gene orders are determined to predict functional relations of genes or phylogenetic relations of genomes. For this purpose, various combinatorial models can be used to identify gene clusters—groups of genes that are colocated in a set of genomes. We introduce a unified approach to model gene clusters and define the problem of labeling the inner nodes of a given phylogenetic tree with sets of gene clusters. Our optimization criterion in this context combines two properties: parsimony, i.e., the number of gains and losses of gene clusters has to be minimal, and consistency, i.e., for each ancestral node, there must exist at least one potential gene order that contains all the reconstructed clusters. We present and evaluate an exact algorithm to solve this problem. Despite its exponential worst-case time complexity, our method is suitable even for large-scale data. We show the effectiveness and efficiency on both simulated and real data.  相似文献   

18.
MOTIVATION: Orthologous proteins in different species are likely to have similar biochemical function and biological role. When annotating a newly sequenced genome by sequence homology, the most precise and reliable functional information can thus be derived from orthologs in other species. A standard method of finding orthologs is to compare the sequence tree with the species tree. However, since the topology of phylogenetic tree is not always reliable one might get incorrect assignments. RESULTS: Here we present a novel method that resolves this problem by analyzing a set of bootstrap trees instead of the optimal tree. The frequency of orthology assignments in the bootstrap trees can be interpreted as a support value for the possible orthology of the sequences. Our method is efficient enough to analyze data in the scale of whole genomes. It is implemented in Java and calculates orthology support levels for all pairwise combinations of homologous sequences of two species. The method was tested on simulated datasets and on real data of homologous proteins.  相似文献   

19.
20.
Complete sequences of multiple strains of the same microbial species provide an invaluable source for studying the evolutionary dynamics between orthologous genes over a relatively short time scale. Usually the intensity of the selection pressure is inferred from a comparison between the nonsynonymous substitution rate and the synonymous substitution rate. In this paper, we propose an alternative method for detecting genes with one or more fast-evolving regions from pairwise comparisons of orthologous genes. Our method looks for regions with overrepresented nonsynonymous mutations along the alignment, and requires a higher nonsynonymous evolution rate in those regions than the neutral evolution rate. It identifies gene targets under intensive selection pressure that are not detected from the conventional rate comparison analysis. For those identified genes with known annotations, most of them have a clear role in processes such as bacterial defense and host–pathogen interactions. Gene sets reported from our method provide a measure of the phenotypic divergence between two closely related genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号