首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When fractionated by reverse-phase high performance liquid chromatography (HPLC), the embryonic hemoglobin of the rainbow trout, Oncorhynchus mykiss, consisted of eight globins different from adult globins in terms of retention time. Amino acid sequences of the N-terminal regions of some globins were determined. In addition, four cDNA clones for embryonic globins from 10-day embryos were isolated (at 15 degrees C), sequenced and the amino acid sequences predicted. In comparison with the sequences of previously characterized globins, they corresponded to two alpha-type and two beta-type globins and therefore were named em.alpha-1, em.alpha-2, em.beta-1 and em.beta-2. The N-terminal 36 amino acids of one (E2) of the embryonic globins isolated by HPLC were identical to those of the sequence deduced from a cDNA, em.beta-2. The phylogenetic relationship between the embryonic globins and other globins previously reported was discussed. The present study is the first demonstration of amino acid sequences of embryonic globins in a teleost. To understand the initiation of erythropoiesis in the early development of the rainbow trout, histochemistry using o-dianisidine/hydrogen peroxide, immunohistochemistry using an antibody against embryonic hemoglobin, and northern blotting and whole embryo in situ hybridization using antisense RNA probe for em.beta-2 were performed. Embryonic globin mRNA, globin and hemoglobin appeared first in the anterior part of the intermediate cell mass (ICM) located in the median line beneath the notochord of embryos 6-7 days after fertilization at 15 degrees C (Vernier's stages 16-20). Shortly after that, the expression signal extended to the posterior part of the ICM and spread out laterally to blood islands on the posterior yolk sac. Thus, the initiation of erythropoiesis in the early embryo of rainbow trout is intraembryonic.  相似文献   

2.
3.
How alpha and beta globin genes are organized and expressed in amniotes is of interest to researchers in a wide variety of fields. Data regarding this from avian species have been scarce. Using genomic and proteomic approaches, we present here our analysis of alpha and beta globins of zebra finch, a passerine bird. We show that finch alpha globin gene cluster has three genes (alphas 1–3), each orthologous to its chicken counterpart. Finch beta globin gene cluster has three genes (betas 1–3), with an additional pseudogene at the 3′ end. Finch beta3 is orthologous to chicken betaA, but the orthology of beta1 and beta2 to chicken counterparts is less clear. All six finch globins are confirmed to encode functional proteins. Gene expression in both globin gene clusters is regulated developmentally. Adult finch blood has a globin profile similar to that of adult chicken, with high levels of beta3 and alpha3 and moderate levels of alpha2. Finch embryonic primitive blood exhibits a globin profile very different from that of equivalent stage chick embryos, with all six globins expressed at high levels. Overall, our data provide a valuable resource for future studies in avian globin gene evolution and globin switching during erythropoietic development.  相似文献   

4.
Specific gene silencing using small interfering RNAs in fish embryos   总被引:7,自引:0,他引:7  
Recently, small interfering RNAs (siRNAs) have been used for gene knockdown in mammalian cultured cells, but their utility in fish has remained unexplored. Here we demonstrate a siRNA-mediated gene silencing technique in rainbow trout embryos. We found that siRNAs effectively suppressed the transient expression of episomally located foreign GFP genes at an early developmental stage and inhibited the expression of GFP genes in stable transgenic trout embryos. Similar gene silencing was observed with an siRNA against the endogenous tyrosinase A gene. siRNAs interfered with the expression of maternally inherited mRNA. siRNAs did not affect non-relevant gene expression and siRNAs with a 4 base mismatch did not affect target gene expression. siRNA gene silencing is therefore highly sequence-specific. Our findings are the first evidence that siRNA-mediated gene silencing is effective in fish. This technique could be a powerful tool for studying gene function during embryonic development in aquacultural fish species, zebrafish, and medaka.  相似文献   

5.
The cellular control of the switch from embryonic to fetal globin formation in man was investigated with studies of globin expression in erythroid cells of 35- to 56-day-old embryos. Analyses of globins synthesized in vivo and in cultures of erythroid progenitors (burst-forming units, BFUe) showed that cells of the yolk sac (primitive) erythropoiesis, in addition to embryonic chains, produced fetal and adult globins and that cells of the definitive (liver) erythropoiesis, in addition to fetal and adult globins, produce embryonic globins. That embryonic, fetal, and adult globins were coexpressed by cells of the same lineage was documented by analysis of globin chains in single BFUe colonies: all 67 yolk sac-origin BFUe colonies and 42 of 43 liver-origin BFUe colonies synthesized epsilon-, gamma-, and beta-chains. These data showed that during the switch from embryonic to adult globin formation, embryonic and definitive globin chains are coexpressed in the primitive, as well as in the definitive, erythroid cells. Such results are compatible with the postulate that the switch from embryonic to fetal globin synthesis represents a time-dependent change in programs of progenitor cells rather than a change in hemopoietic cell lineages.  相似文献   

6.
7.
8.
9.
Vertebrate embryos contain hemoglobins composed of globin polypeptides structurally distinct from those of adults. Together with fetal and adult globin chains, these early embryonic globins are encoded by two developmentally regulated multigene families. To facilitate analysis of the structure and evolution of early embryonic alpha-globin genes, we have determined the complete amino acid sequences of the pi and pi' alpha-like globins of the chick embryo. While differing from each other by an alanine/glutamic acid interchange at position 124, this pair of sequences differs from the major and minor adult alpha-globins by 43%. The early embryonic and adult alpha-like sequences appear to have diverged following an ancient gene duplication. We discuss specific amino acid substitutions in functional positions as possible mediators of the reduced Bohr effect and elevated oxygen affinity, which are characteristic of early embryonic hemoglobins.  相似文献   

10.
Characterization of embryonic globin genes of the zebrafish   总被引:7,自引:0,他引:7  
Hemoglobin switching is a complex process by which distinct globin chains are produced during stages of development. In an effort to characterize the process of hemoglobin switching in the zebrafish model system, we have isolated and characterized several embryonic globin genes. The embryonic and adult globin genes are found in clusters in a head-to-head configuration. One cluster of embryonic and adult genes is localized to linkage group 3, whereas another embryonic cluster is localized on linkage group 12. Several embryonic globin genes demonstrate an erythroid-specific pattern of expression early during embryogenesis and later are downregulated as definitive hematopoiesis occurs. We utilized electrospray mass spectroscopy to correlate globin genes and protein expression in developing embryonic red cells. The mutation, zinfandel, has a hypochromic microcytic anemia as an embryo, but later recovers in adulthood. The zinfandel gene maps to linkage group 3 near the major globin gene locus, strongly suggesting that zinfandel represents an embryonic globin defect. Our studies are the first to systematically evaluate the embryonic globins in the zebrafish and will ultimately be useful in evaluating zebrafish mutants with defects in hemoglobin production and switching.  相似文献   

11.
12.
13.
The facilitated diffusion of monosaccharides across the plasma membrane is mediated by glucose transporters (GLUTs). In contrast to mammals, the glucose transport system of lower vertebrates remains unexplored. We detected glucose transport activity in rainbow trout embryos. Two GLUTs sharing 83% amino acid identity were cloned from juvenile fish, these have been denoted OnmyGLUT1A and OnmyGLUT1B. In adult trout OnmyGLUT1A is predominantly expressed in the heart with low expression in other tissues. An inverse terminal repeat of a Tc1-like transposable element was found in the 3'-untranslated region of OnmyGLUT1B. Phylogenetic analysis suggested that rainbow trout genes share a common ancestor with higher vertebrate GLUT1. We also found GLUT genes in several salmonid species.  相似文献   

14.
15.
Stage-specific embryonic antigen-1 (SSEA-1) and the antigenic determinant of monoclonal antibody EMA-1 are expressed in a stage-specific manner in mouse early embryos. To study whether these antigens generally exist in fish, expression of the antigens was examined in embryos, ovarian follicles, and adult tissues of a teleost medaka (Oryzias latipes), using immunohistochemical techniques. In 1-cell-stage embryos, these carbohydrate antigens were found in numerous cytoplasmic granules in the blastodisc and the cortical cytoplasm. These granules gradually decreased in number as the embryos developed. In 4-cell-stage embryos, the antigens appeared on the cleavage planes and were located on the cleavage planes within the blastoderm in the following cleavage stages. In blastula-stage embryos, the expression was ubiquitously found on the cell surface of blastomeres. At the mid-gastrula stage, the antigens were restricted to the enveloping layer, yolk syncytial layer, and cortical cytoplasm, but were rarely found in deep cells that contribute to formation of the embryonic body. In later-stage embryos and adult fish, the antigens were located in various tissues. In ovarian follicles, the antigens were found in granules of oocytes and granulosa cells. These observations were basically consistent with those in mice; however, expression in 1-cell-stage embryos and ovarian follicles has not been observed in mice. This unexpected finding suggests that the antigens are produced in granulosa cells and transferred to 1-cell-stage embryos via oocytes, and that the antigens involved in the early developmental process are maternally prepared in teleosts.  相似文献   

16.
17.
Prior research has demonstrated that globin ontogeny of hamster proceeds nearly to completion during the several days that yolk sac erythroid cells (YSEC) circulate in the embryo; synthesis of embryonic globin chains gives way to synthesis of adult globin chains in these primitive cells. In the present study, we translated total cell RNA extracted from YSEC on days 9-13 of gestation in wheat germ cell-free extract, expecting to observe the same progressive rise that occurs in vivo in rates of translation of alpha- and beta-globin mRNA during ontogeny. The opposite occurred; translation rates of both globins decreased sharply. This disparity between synthesis of alpha- and beta-globins in vivo and in vitro suggested an element of control of translation attributable to the YSEC cytoplasm. We therefore assayed the effect of RNA-free clarified YSEC cytoplasm on cell-free translation of YSEC RNA. A repression of translation was detected of alpha- and beta-globin mRNA (not of embryonic globin mRNA), exercised strongly by cytoplasm from YSEC early in ontogeny (gestational day 9), and weakening as ontogeny progressed. The same effect was noted on alpha- and beta-globin mRNA of adult hamster and of rabbit. Heat treatment of cytoplasm abolished the greater part of the translation regulation, suggesting that the active agent is protein. Further characterization of this translational regulator included: (a) it binds to globin poly(A) mRNA but not to poly(A), (b) it was not detected in cell lysate of adult hamster brain, lung, or erythrocytes, and (c) it did not inhibit translation of adult hamster brain and liver RNA. We conclude that hamster globin ontogeny is substantially modulated by this translational regulation of alpha- and beta-globin expression.  相似文献   

18.
In rainbow trout (Oncorhynchus mykiss) and other fishes, embryonic development rate is an ecologically and evolutionarily important trait that is closely associated with survival and physiological performance later in life. To identify genes differentially regulated in fast and slow-developing embryos of rainbow trout, we examined gene expression across developmental time points in rainbow trout embryos possessing alleles linked to a major quantitative trait loci (QTL) for fast versus slow embryonic development rate. Whole genome expression microarray analyses were conducted using embryos from a fourth generation backcross family, whereby each backcross generation involved the introgression of the fast-developing alleles for a major development rate QTL into a slow-developing clonal line of rainbow trout. Embryos were collected at 15, 19, and 28 days post-fertilization; sex and QTL genotype were determined using molecular markers, and cDNA from 48 embryos were used for microarray analysis. A total of 183 features were identified with significant differences between embryonic development rate genotypes. Genes associated with cell cycle growth, muscle contraction and protein synthesis were expressed significantly higher in embryos with the fast-developing allele (Clearwater) than those with the slow-developing allele (Oregon State University), which may associate with fast growth and early body mass construction in embryo development. Across time points, individuals with the fast-developing QTL allele appeared to have earlier onset of these developmental processes when compared to individuals with the slow development alleles, even as early as 15 days post-fertilization. Differentially expressed candidate genes chosen for linkage mapping were localized primarily to regions outside of the major embryonic development rate QTL, with the exception of a single gene (very low-density lipoprotein receptor precursor).  相似文献   

19.
Yolk sac derived erythroid cells in mouse embryos synthesize four embryonic globins of which two are alpha-like and two are beta-like. Pure globin messenger RNAs from these cells were used as templates for two successive polymerizing reactions and a mixture of double stranded cDNAs coding for the four globins was obtained. These molecules were blunt-end ligated to an ECoR1 digested pBR322 plasmid and the recombinant plasmids were used to transform E. coli Hb101. Bacterial clones which proved positive upon hybridization with 32P-labelled embryonic globin cDNA were amplified and their plasmid DNA was isolated. Three different plasmids were studied, namely no. 2, 16 and 54. The restriction map of these plasmids showed that: 1) plasmid no. 2 and 54 had lost extensive DNA sequences comprising the genes responsible for tetracycline resistance; 2) the size of inserted sequences ranges from 427 base pairs of plasmid no. 16 to about 280 base pairs of plasmid no. 54; 3) plasmid no. 2 does not share any of the studied restriction sites with the other plasmids, while no. 2 and 54 have at least one site in common. The coding properties of inserted DNA were determined by positive hybrid translation showing that no. 2 codes for the alpha-like embryonic chain x, while no. 16 and 54 code for a beta-like embryonic chain, either y or z.  相似文献   

20.
Transplanting primordial germ cells (PGCs) has a number of potential applications in fish bioengineering. Previously, we established a system to visualize live PGCs in the rainbow trout by introducing the green fluorescent protein (Gfp) gene driven by rainbow trout vasa gene regulatory regions. However, for PGC transplantation to be practically useful in aquaculture, visualization of PGCs using a nontransgenic technique is required. In this study, we demonstrate a method for labeling PGCs from various fish species by introducing chimeric RNAs composed of the Gfp coding region and vasa gene 3'-untranslated regions (UTRs); these sequences play a critical role in stabilizing mRNA in zebrafish PGCs. The GFP chimeric RNAs, including vasa 3'-UTR RNAs from rainbow trout, Nibe croaker, and zebrafish, were microinjected into the cytoplasm of fertilized eggs of several Salmonidae species. All the resulting embryos showed specific labeling in PGCs after the somatogenesis stage, which continued to be visible for at least 50 days. To apply this technique to PGC transplantation, PGCs labeled with chimeric RNA were microinjected into the peritoneal cavity of newly hatched salmonid embryos. The GFP labeling was sufficiently long-lived for the initial stage of donor PGC behavior to be followed in the recipient embryos. Importantly, donor PGCs from brown trout and masu salmon were incorporated into xenogeneic genital ridges in recipient rainbow trout. This nontransgenic method for labeling fish PGCs should be extremely useful for applications of PGC transplantation where the resulting progeny are to be released into the environment, such as PGC cryopreservation for fish stocks and surrogate brood stock technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号