首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liang  Ruixia  Li  Chunjian 《Plant and Soil》2003,248(1-2):221-227
In contrast with the well document role of proteoid root formation and carboxylate exudation in acclimation to P deficiency in white lupin (Lupinus albus L.), their role under other nutrient deficiencies and their ecological significance are still poorly understood. In the present work, differences in proteoid root formation, exudation of carboxylates by root clusters, non-proteoid and proteoid root tips by using a non-destructive method, and concentrations of organic acids in the tissues of plants grown in the absence of P, Fe or K were studied. Proton release from roots increased soon after withdrawing Fe from the medium; within three days the solution pH decreased from 6 to about 4, and this increased release in protons continued until the end of the experiment. Acidification appeared much later, on the 10th day and the 14th day after withdrawal of P and K, respectively; the extent of the acidification was also weaker than under –Fe (5.2 for –P and 5.7 for control on the 10th day; 6.0 for –K and 6.1 for control on the 14th day). Root clusters formed when plants were grown under –P and –Fe, but not under –K conditions. The root clusters developed sooner under –Fe conditions, but the number of clusters was far less than under –P. Under P deficiency, root clusters released mainly citrate, but also some malate; while the major organic acid released by root tips of both non-proteoid and proteoid roots was malate. However, under Fe deficiency, the majority of the organic acids exuded both by the root clusters and root tips was malate, whereas only a small amount of citrate was detected. The release rate of citrate by – P root clusters was greater than that by – Fe root clusters. Moreover, the release rate of malate was greater in –Fe root clusters than in –P root clusters, but the opposite was found in proteoid root tips, i.e. faster in –P than in –Fe proteoid root tips. The significances of proteoid root formation and release of organic acids in acclimation to different nutrient deficiencies for white lupin plants are discussed.  相似文献   

2.
In order to cope with phosphate deficiency, white lupin produces bottle‐brushed like roots, so‐called cluster or proteoid roots which are specialized in malate and citrate excretion. Young, developing cluster roots mainly excrete malate whereas mature cluster roots mainly release citrate. Mature proteoid roots excrete four to six times more carboxylates compared with juvenile proteoid roots. Using a cDNA‐amplified restriction fragment length polymorphism (AFLP) approach we identified a gene coding for a putative ATP‐citrate lyase (ACL) up‐regulated in young cluster roots. Cloning of the lupin ACL revealed that plant ACL is constituted by two polypeptides (ACLA and ACLB) encoded by two different genes. This contrasts with the animal ACL, constituted of one polypeptide which covers ACLA and ACLB. The ACL function of the two lupin gene products has been demonstrated by heterologous expression in yeast. Both subunits are required for ACL activity. In lupin cluster roots, our results suggest that ACL activity could be responsible for the switch between malate and citrate excretion in the different developmental stages of cluster roots. In primary roots of lupin and maize, ACL activity was positively correlated with malate exudation. These results show that ACL is implicated in root exudation of organic acids and hence plays a novel role in addition to lipid synthesis. Our results suggest that in addition to lipid biosynthesis, in plants, ACL is implicated in malate excretion.  相似文献   

3.
Shen  J.  Rengel  Z.  Tang  C.  Zhang  F. 《Plant and Soil》2003,248(1-2):199-206
The present study examined the effect of phosphorus (P) limitation on cluster root formation and exudation of carboxylates by N2-fixing white lupin (Lupinus albus L. cv. Kiev) grown in a P-deficient sandy soil. Plants received 10 (limited P) or 200 g P g–1 soil as FePO4 (adequate P) and were grown in a phytotron at 20/12 °C (12/12 h) for 76 days in soil columns. Cluster root formation was assessed and root exudates were collected at 9-day intervals. Shoot and root dry weights were higher in plants grown in the adequate-P compared to the limited-P treatment for 67 days. No clear difference in the total root length was observed between two P treatments before day 58. However, the specific root length increased rapidly from 17 m g–1 DW at day 40 to 28 m g–1 at day 49 in the P-limited plants, but decreased in the P-adequate plants. The effect of P limitation on enhancement of cluster root formation was observed from day 40 and reached the maximum at day 58. The number of cluster roots was negatively correlated with the P concentration in both roots and shoots. Phosphorus limitation increased exudation of citrate from day 40. The exudation of citrate displayed a cyclic pattern throughout the experiment, and appeared related to internal P concentration in plants, particularly P concentration in shoots. The sorption of exogenously added citrate in the soil was also examined. The amount of extractable citrate remained unchanged for 2 h, but decreased thereafter, suggesting that the soil had a low capacity to sorb citrate, and the rate of its decomposition by microorganisms was slow. Collecting solution leached through a soil column is a simple and reliable method to acquire root exudates from white lupin grown in soil. The results suggest that formation of cluster roots and exudation of citrate in white lupin are regulated by P concentration in shoots.  相似文献   

4.
5.
When white lupin (Lupinus albus L.) is subjected to P deficiency lateral root development is altered and densely clustered, tertiary lateral roots (proteoid roots) are initiated. These proteoid roots exude large amounts of citrate, which increases P solubilization. In the current study plants were grown with either 1 mM P (+P-treated) or without P (-P-treated). Shoots or roots of intact plants from both P treatments were labeled independently with 14CO2 to compare the relative contribution of C fixed in each with the C exuded from roots as citrate and other organic acids. About 25-fold more acid-stable 14C, primarily in citrate and malate, was recovered in exudates from the roots of -P-treated plants compared with +P-treated plants. The rate of in vivo C fixation in roots was about 4-fold higher in -P-treated plants than in +P-treated plants. Evidence from labeling intact shoots or roots indicates that synthesis of citrate exuded by -P-treated roots is directly related to nonphotosynthetic C fixation in roots. C fixed in roots of -P-treated plants contributed about 25 and 34% of the C exuded as citrate and malate, respectively. Nonphotosynthetic C fixation in white lupin roots is an integral component in the exudation of large amounts of citrate and malate, thus increasing the P available to the plant.  相似文献   

6.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   

7.
Release of large amounts of citric acid from specialized root clusters (proteoid roots) of phosphorus (P)-deficient white lupin (Lupinus albus L.) is an efficient strategy for chemical mobilization of sparingly available P sources in the rhizosphere. The present study demonstrates that increased accumulation and exudation of citric acid and a concomitant release of protons were predominantly restricted to mature root clusters in the later stages of P deficiency. Inhibition of citrate exudation by exogenous application of anion-channel blockers such as ethacrynic- and anthracene-9-carboxylic acids may indicate involvement of an anion channel. Phosphorus-deficiency-induced accumulation and subsequent exudation of citric acid seem to be a consequence of both increased biosynthesis and reduced metabolization of citric acid in the proteoid root tissue, indicated by increased in-vitro activity and enzyme protein levels of phosphoenolpyruvate carboxylase (EC 4.1.1.31), and reduced activity of aconitase (EC 4.2.1.3) and root respiration. Similar to citric acid, acid phosphatase, which is secreted by roots and involved in the mobilization of the organic soil P fraction, was released predominantly from proteoid roots of P-deficient plants. Also 33Pi uptake per unit root fresh-weight was increased by approximately 50% in juvenile and mature proteoid root clusters compared to apical segments of non-proteoid roots. Kinetic studies revealed a K m of 30.7 μM for Pi uptake of non-proteoid root apices in P-sufficient plants, versus K m values of 8.5–8.6 μM for non-proteoid and juvenile proteoid roots under P-deficient conditions, suggesting the induction of a high-affinity Pi-uptake system. Obviously, P-deficiency-induced adaptations of white lupin, involved in P acquisition and mobilization of sparingly available P sources, are predominantly confined to proteoid roots, and moreover to distinct stages during proteoid root development. Received: 10 September 1998 / Accepted: 22 December 1998  相似文献   

8.
Acid phosphatase activity in phosphorus-deficient white lupin roots   总被引:15,自引:0,他引:15  
White lupin ( Lupinus albus L.) develops proteoid roots when grown in phosphorus (P)-deficient conditions. These short, lateral, densely clustered roots are adapted to increase P availability. Previous studies from our laboratory have shown proteoid roots have higher rates of non-photosynthetic carbon fixation than normal roots and altered metabolism to support organic acid exudation, which serves to solubilize P in the rhizosphere. The present work indicates that proteoid roots possess additional adaptations for increasing P availability and possibly for conserving P in the plant. Roots from P-deficient (–P) plants had significantly greater acid phosphatase activity in both root extracts and root exudates than comparable samples from P-sufficient (+P) plants beginning 10 d after emergence. The increase in activity in –P plants was most pronounced in the proteoid regions. In contrast, no induction of phytase activity was found in –P plants compared to +P plants. The number of proteoid roots present was not affected by the source of phosphorus supplied, whether organic or inorganic forms. Adding molybdate to the roots increased the number of proteoid roots in plants supplied with organic P, but not inorganic P. Increased acid phosphatase activity was detected in root exudates in the presence of organic P sources. Native-polyacrylamide gel electrophoresis demonstrated that under P-deficient conditions, a unique isoform of acid phosphatase was induced between 10 and 12 d after emergence. This isoform was found not only within the root, but it comprised the major form exuded from proteoid roots of –P plants. The fact that exudation of proteoid-root-specific acid phosphatase coincides with proteoid root development and increased exudation of organic acids indicates that white lupin has several coordinated adaptive strategies to P-deficient conditions.  相似文献   

9.
Abstract. White lupin ( Lupinus albus L.) was grown for 13 weeks in a phosphorus (P) deficient calcareous soil (20% CaCO3, pH(H2O)7.5) which had been sterilized prior to planting and fertilized with nitrate as source of nitrogen. In response to P deficiency, proteoid roots developed which accounted for about 50% of the root dry weight. In the rhizosphere soil of the proteoid root zones, the pH dropped to 4.8 and abundant white precipitates became visible. X-ray spectroscopy and chemical analysis showed that these precipitates consisted of calcium citrate. The amount of citrate released as root exudate by 13-week-old plants was about 1 g plant−1, representing about 23% of the total plant dry weight at harvest. In the rhizosphere soil of the proteoid root zones the concentrations of available P decreased and of available Fe, Mn and Zn increased. The strong acidification of the rhizosphere and the cation/anion uptake ratio of the plants strongly suggests that proteoid roots of white lupin excrete citric acid, rather than citrate, into the rhizosphere leading to intensive chemical extraction of a limited soil volume. In a calcareous soil, citric acid excretion leads to dissolution of CaCO3 and precipitation of calcium citrate in the zone of proteoid roots.  相似文献   

10.
Watt  Michelle  Evans  John R. 《Plant and Soil》2003,248(1-2):271-283
White lupin and soybean have contrasting root morphologies: white lupin develops proteoid or cluster roots, roots with discreet clusters of short, determinate branch roots (rootlets) while soybean develops a more fibrous root system with evenly distributed, longer branch roots. Growth and P acquisition by white lupin and soybean were compared in a soil high in bound, total P, with or without additional inorganic P applied in solution. Additional P increased biomass by 25% and doubled total P in soybean. In contrast, white lupin did not respond to additional P in biomass or total P. However added P decreased cluster development on proteoid roots indicating that white lupin sensed the added P. The reduction in cluster weight per plant was exactly countered by an increase in dry weight of other roots. Soybean root development responded to P application, proliferating branch roots with active meristems in the upper portion of the soil profile where P was applied, and reducing root weight to plant weight by 13%. White lupin did not proliferate roots in response to P application. When P was not added to soil, soybean and lupin acquired similar P per unit root dry weight. However, white lupin accumulated 4.8 times more P per unit root length, suggesting that P acquisition in these plants involved other mechanisms such as the exudation of P solubilizing compounds. Soybean accessed P by developing more root length thus colonising more soil volume than white lupin and, therefore, was better able to take advantage of the added P. Pericycle and root tip meristem activities were critical to the differences in root development between white lupin and soybean, and therefore their responses to plant and soil P.  相似文献   

11.
Kania  Angelika  Langlade  Nicolas  Martinoia  Enrico  Neumann  Günter 《Plant and Soil》2003,248(1-2):117-127
A possible contribution of alterations in metabolic sequences involved in citrate catabolism, to intracellular accumulation and subsequent release of citrate was investigated in cluster roots of phosphorus (P)-deficient white lupin (Lupinus albus L.). Citrate accumulation during maturation of root clusters was associated with decreased levels of intracellular soluble Pi and ATP, and with reduced rates of respiration. Inhibitor studies with KCN and salicylhydroxamic acid (SHAM) suggest a reduced capacity of both the cytochrome pathway and of the alternative respiration with a concomitant decrease of immunochemically detectable protein levels of the alternative oxidase. Reduced respiration seems to be related to a general impairment of the respiratory system, rather than to limitation of respiratory substrates such as Pi and adenylates, as indicated by the absence of stimulatory effects of the uncoupler CCCP. The citrate/malate ratio in juvenile root clusters with high rates of respiration and low inherent levels of citrate accumulation was increased by short-term application (4–8 h) of azide and SHAM as respiration inhibitors. During maturation of root clusters, a shift from intracellular malic acid to citric acid accumulation was associated also with down-regulation of ATP citrate lyase (ACL), which catalyzes cleavage of citrate into acetyl-CoA and oxaloacetate with a putative function as anapleurotic source for the production of acetyl-CoA under P-deficient conditions. Inhibition of nitrate uptake and assimilation is a general response to P limitation in many plant species including white lupin. Reduced consumption of the amino acceptor 2-oxoglutaric acid as a product of citrate turnover may therefore contribute to increased citrate accumulation. Accordingly, artificial inhibition of nitrate reduction by localized application of tungstate significantly increased the citrate/malate ratio in juvenile root clusters. Lowering the cytosolic pH by external application of propionate stimulated citrate and malate exudation in non-cluster lateral roots and in developing root clusters. This effect was reverted by preincubation with phosphonate to buffer the cytosol. The results suggest that acidification of the cytosol may be an important factor, triggering the transient release of citrate and protons from mature root clusters in P-deficient white lupin.  相似文献   

12.
Organic anion exudation by roots as a mechanism of aluminium (Al) resistance has been intensively studied lately. In the present study, we evaluated qualitative and quantitative aspects of root exudation of organic anions in maize genotypes of distinct sensitivity to Al in response to Al exposure. Maize seedlings were grown axenically in nutrient solution and root exudates were collected along the whole seminal root axis for a short period (4 h) using a divided-root-chamber technique. In root exudates collected from 10-mm long root apices, citrate accounted for 67% of the total organic anions found, followed by malate (29%), trans-aconitate (3%), fumarate (<1%), and cis-aconitate (1%). Rates of citrate exudation from root apices of two genotypes with differential resistance to Al were consistently higher in the Al resistant one, differing by a factor of 1.7 – 3.0 across a range of external Al concentrations. Furthermore, relative Al resistance of eight maize genotypes correlated significantly well with their citrate exudation rate measured at 40 M Al. Higher exudation rates were accompanied by a less inhibited root elongation. The exudation of citrate along the longitudinal axis of fully developed seminal roots showed a particular pattern: citrate was exuded mainly in the regions of root apices, either belonging to the main root or to the lateral roots in the most basal part of the main root. The involvement of citrate in a mechanism of Al resistance is evaluated in terms of protection of the root from the effects of excess Al on root elongation and on nutrient uptake along a root axis showing distinct sites of citrate exudation.  相似文献   

13.
Malate plays a central role in plant nutrition   总被引:5,自引:0,他引:5  
Schulze  J.  Tesfaye  M.  Litjens  R. H. M. G.  Bucciarelli  B.  Trepp  G.  Miller  S.  Samac  D.  Allan  D.  Vance  C. P. 《Plant and Soil》2002,247(1):133-139
Malate occupies a central role in plant metabolism. Its importance in plant mineral nutrition is reflected by the role it plays in symbiotic nitrogen fixation, phosphorus acquisition, and aluminum tolerance. In nitrogen-fixing root nodules, malate is the primary substrate for bacteroid respiration, thus fueling nitrogenase. Malate also provides the carbon skeletons for assimilation of fixed nitrogen into amino acids. During phosphorus deficiency, malate is frequently secreted from roots to release unavailable forms of phosphorus. Malate is also involved with plant adaptation to aluminum toxicity. To define the genetic and biochemical regulation of malate formation in plant nutrition we have isolated and characterized genes involved in malate metabolism from nitrogen-fixing root nodules of alfalfa and those involved in organic acid excretion from phosphorus-deficient proteoid roots of white lupin. Moreover, we have overexpressed malate dehydrogenase in alfalfa in attempts to improve nutrient acquisition. This report is an overview of our efforts to understand and modify malate metabolism, particularly in the legumes alfalfa and white lupin.  相似文献   

14.
Chickpea and white lupin roots are able to exude large amounts of carboxylates, but the resulting concentrations in the rhizosphere vary widely. We grew chickpea in pots in eleven different Western Australian soils, all with low phosphorus concentrations. While final plant mass varied more than two-fold and phosphorus content almost five-fold, there were only minor changes in root morphological traits that potentially enhance phosphorus uptake (e.g., the proportion of plant mass allocated to roots, or the length of roots per unit root mass). In contrast, the concentration of carboxylates (mainly malonate, citrate and malate, extracted using a 0.2 mM CaCl2 solution) varied ten-fold (averaging 2.3 mol g–1 dry rhizosphere soil, approximately equivalent to a soil solution concentration of 23 mM). Plant phosphorus uptake was positively correlated with the concentration of carboxylates in the rhizosphere, and it was consistently higher in soils with a smaller capacity to sorb phosphorus. Phosphorus content was not correlated with bicarbonate-extractable phosphorus or any other single soil trait. These results suggest that exuded carboxylates increased the availability of phosphorus to the plant, however, the factors that affected root exudation rates are not known. When grown in the same six soils, three commonly used Western Australian chickpea cultivars had very similar rhizosphere carboxylate concentrations (extracted using a 0.2 mM CaCl2 solution), suggesting that there is little genetic variation for this trait in chickpea. Variation in the concentration of carboxylates in the rhizosphere of white lupin did not parallel that of chickpea across the six soils. However, in both species the proportion of citrate decreased and that of malate increased at lower soil pH. We conclude that patterns of variation in root exudates need to be understood to optimise the use of this trait in enhancing crop phosphorus uptake.  相似文献   

15.
White lupin (Lupinus albus L.) is able to acclimate to phosphorus deficiency by forming proteoid roots that release a large amount of citric acid, resulting in the mobilization of sparingly soluble soil phosphate in the rhizosphere. The mechanisms responsible for the release of organic acids have not been fully elucidated. In this study, we focused on the link between citrate and malate release and the release of H+ and other inorganic ions by proteoid roots of white lupin. The release of citrate was closely correlated with the release of H+, K+, Na+ and Mg2+, but not with that of Ca2+. The stoichiometric relationships between citrate release and the release of H+, K+, Na+ and Mg2+ were 1 : 1.3, 1 : 2.1, 1 : 1.5 and 1 : 0.47, respectively. Similar correlations were found between exudation of malate and cations. During 30 min incubation, fusicoccin addition stimulated H+ and malate release, but not citrate release. A concomitant stimulation of H+, malate and citrate release was measured after 60 min incubation. Vanadate inhibited the release of H+ and malate, but not that of citrate. Anthracene-9-carboxylic acid, an anion channel blocker, caused a concomitant decrease in release of citrate, malate and H+. We conclude that for export of citrate across the plasma membrane of proteoid root cells, H+ release is not strictly related to citrate release. Other cations such as K+ and Na+ can also serve as counterions for citrate release. In contrast, malate release shows a strong H+ release dependency.  相似文献   

16.
White lupin (Lupinus albus L.) develops proteoid (cluster) rootsin response to phosphorus deficiency. Proteoid roots are composedof tight clusters of rootlets that initiate from the pericycleopposite protoxylem poles and emerge from every protoxylem polewithin the proteoid root axis. Auxins are required for lateralroot development, but little is known of their role in proteoidroot formation. Proteoid root numbers were dramatically increasedin P-sufficient (+P) plants by application of the syntheticauxin, naphthalene acetic acid (NAA), to leaves, and were reducedin P-deficient (-P) plants by the presence of auxin transportinhibitors [2,3,5-triiodobenzoic acid (TIBA) and naphthylphthalamicacid (NPA)]. While ethylene concentrations in the root zonewere 1.5-fold higher in -P plants, there was no effect on proteoidroot numbers of the ethylene inhibitors aminoethoxyvinvylglycine(AVG) and silver thiosulphate. Phosphonate, which interfereswith plant perception of internal P concentration, dramaticallyincreased the number of proteoid root segments in +P plants.Activities of phosphoenolpyruvate carboxylase (PEPC), malatedehydrogenase (MDH) and exuded acid phosphatase in proteoidroot segments were not different from +P controls when NAA wasapplied to +P lupin plants, but increased to levels comparableto -P plants in the phosphonate treatment. Addition of TIBAor NPA to -P plants reduced PEPC and MDH activity of -P proteoidroots to levels found in +P or -P normal root tissues, but didnot affect acid phosphatase in root exudates. These resultssuggest that auxin transport from the shoot plays a role inthe formation of proteoid roots during P deficiency. Auxin-stimulatedproteoid root formation is necessary, but not sufficient, tosignal the up-regulation of PEPC and MDH in proteoid root segments.In contrast, phosphonate applied to P-sufficient white lupinelicits the full suite of coordinated responses to P deficiencyCopyright2000 Annals of Botany Company Lupinus albus L., white lupin, proteoid roots, auxin, ethylene, phosphonate, phosphorus deficiency  相似文献   

17.

Aims

Zinc (Zn) and phosphorus (P) deficiency often occurs at the same time and limits crop production in many soils. It has been suggested that citrate root exudation is a response of plants to both deficiencies. We used white lupin (Lupinus albus L.) as a model plant to clarify if citrate exuded by roots could increase the bioavailability of Zn and P in calcareous soils.

Methods

White lupin was grown in nutrient solution and in two calcareous soils in a rhizobox. Rhizosphere soil solution was sampled to determine citrate, metals and P. Based on the measured citrate concentrations, a soil extraction experiment with citrate as extractant was done.

Results

Absence of Zn triggered neither cluster root formation nor citrate exudation of white lupin grown in nutrient solution, whereas low P supply did. The maximum citrate concentration (~1.5?mM) found in the cluster rhizosphere soil solution of one soil mobilized P, but not Zn. In the other soil the highest citrate concentration (~0.5?mM) mobilized both elements.

Conclusions

White lupin does not respond to low Zn bioavailability by increasing citrate exudation. Such a response was observed at low P supply only. Whether Zn and P can be mobilized by citrate is soil-dependent and the possible controlling mechanisms are discussed.  相似文献   

18.
We investigated (1) the effect of constant and altered inorganic phosphate (Pi) supply (1–100 mmol m–3) on proteoid root production by white lupin ( Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at Pi solution concentrations of 1–10 mmol m–3 and was suppressed at 25 mmol m–3 Pi and higher. Except at 1 mmol m–3 Pi, the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the Pi concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1–3 cm region from the root tip. Citrate release from the 0–1 and 5–9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1–3 cm segment. Electrical potential and 32Pi uptake measurements showed that Pi uptake was more uniform along the proteoid root than citrate efflux.  相似文献   

19.
Both phosphorus (P) deficiency and aluminum (Al) toxicity induce root exudation of carboxylates, but the relationship between these two effects is not fully understood. Here, carboxylate exudation induced by Al in Lupinus albus (white lupin) was characterized and compared with that induced by P deficiency. Aluminum treatments were applied to whole root systems or selected root zones of plants with limited (1 microM) or sufficient (50 microM) P supply. Aluminum stimulated citrate efflux after 1-2 h; this response was not mimicked by a similar trivalent cation, La(3+). P deficiency triggered citrate release from mature cluster roots, whereas Al stimulated citrate exudation from the 5- to 10-mm subapical root zones of lateral roots and from mature and senescent cluster roots. Al-induced citrate exudation was inhibited by P limitation at the seedling stage, but was stimulated at later growth stages. Citrate exudation was sensitive to anion-channel blockers. Al treatments did not affect primary root elongation, but inhibited the elongation of lateral roots. The data demonstrate differential patterns of citrate exudation in L. albus, depending on root zone, developmental stage, P nutritional status and Al stress. These findings are discussed in terms of possible functions and underlying mechanisms.  相似文献   

20.
de Bakker  N.V.J.  Hemminga  M. A.  Van Soelen  J. 《Plant and Soil》1999,215(1):19-27
Incorporation of cover crops into cropping systems may contribute to a more efficient utilization of soil and fertilizer P by less P-efficient crops through exudation of P-mobilizing compounds by the roots of P-efficient plant species. The main objective of the present work was to test this hypothesis. First a method has been developed which allows the quantification of organic anion exudation from individual cluster roots formed by P-deficient white lupin (Lupinus albus L.). Lupin plants were grown in nutrient solution at 1 μM P and in a low P loess in small rhizotrons. Organic anions exuded from intact plants grown in nutrient solution were collected from individual cluster roots and root tips sealed in small compartments by an anion-exchange resin placed in nylon bags (resin-bags). Succinate was the dominant organic anion exuded followed by citrate and malate. The mean of citrate exudation-rate was 0.06 pmol mm−1 s−1 with exudation highly dependent on the citrate concentration and on the age of the cluster roots. Exudates from cluster roots and root tips grown at the soil surface (rhizotron-grown plants) were collected using overlayered resin–agar (resin mixed with agar). Citrate exudation from cluster roots was 10 times higher than that from root tips. Fractionation of P in the cluster root rhizosphere-soil indicates that white lupin can mobilize P not only from the available and acid-soluble P, but also from the stable residual soil P fractions. In pot experiments with an acid luvisol derived from loess low in available P, growth of wheat was significantly improved when mixed-cropped with white lupin due to improved P uptake. Both in mixed culture and in rotation wheat could benefit from the P mobilization capacity of white lupin, supporting the hypothesis above. Nine tropical leguminous cover crops and maize were grown in a pot experiment using a luvisol from Northern Nigeria low in available P. All plant species derived most of their P from the resin and bicarbonate-extractable inorganic P. Organic P (Po) accumulated particularly in the rhizosphere of all plant species. There was a significant negative correlation between the species-specific rhizosphere acid phosphatase activity and Po accumulation. Growth and P uptake of maize grown in rotation after legumes were enhanced indicating that improved P nutrition was a contributing factor. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号