首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyclonal antibody therapy in the form of hyper-immune serum has for more than a century been used for treatment of many infectious diseases. However, with the emergence of first antibiotics and later recombinant monoclonal antibody therapy, the use of hyper-immune serum has declined. The main reason for this is that methods for consistent manufacturing of safe hyper immune immunoglobulin products have been lacking. In contrast, manufacturing processes of recombinant monoclonal antibodies follow a well established schedule and it appears obvious to use similar methods to produce recombinant polyclonal products. However, the methods for monoclonal antibody manufacturing are, for several reasons, not directly applicable to generation and manufacture of polyclonal recombinant antibodies. A new production strategy based on recombinant mammalian producer cells has recently been developed to support consistent generation of recombinant polyclonal antibodies for therapeutic use. This review describes aspects of this novel technology with emphasis on the generation, production and characterization procedures employed, and provides comparison with alternative polyclonal and monoclonal antibody manufacturing strategies.  相似文献   

2.
The emergence of Id variants is a major escape mechanism from anti-Id therapy of human B cell malignancies and of the murine B cell lymphoma 38C13. To determine what impact the epitope specificity of anti-Id antibodies has on the prevention of emergence of such Id variants in the 38C13 lymphoma, anti-Id mAb of varying epitope specificity for the Id of 38C13 tumor cells were produced and studied. Some antibodies, produced by immunizing mice with both the wild-type 38C13 IgM and variant IgM, cross-reacted with wild-type 38C13 IgM and with all four members of a panel of variant IgM. These anti-Id did not react with separated 38C13 IgM H or L chains by Western blot, but did react with the cytoplasmic H chain of the surface Ig- variant cell line T2D that expresses the same H chain as wild-type 38C13 in its cytoplasm but does not express any associated L chain. In contrast, anti-Id of narrower specificity did not react with this H chain. This indicated that the broadly cross-reactive antibodies recognized a stable epitope on 38C13 H chain. When a broadly cross-reactive antibody MS11G6 was compared to S1C5, an antibody of narrower specificity, MS11G6, was superior at preventing tumor growth in mice inoculated with 38C13 cells. Moreover, no surface Ig+ variants emerged in escaping tumors in the MS11G6-treated group, whereas such variants were common in the S1C5 treated group. Both anti-Id were of equal efficacy in eliminating wild-type 38C13 cells by using 38C13 cells in tumor inoculums that had just been cloned in vitro, but MS11G6 was also capable of preventing the growth of several surface Ig+ variant cell lines in vivo. We conclude that anti-Id recognizing more stable Id determinants can limit the emergence of Id variants and therefore be more effective therapeutic agents. This finding is of additional importance as additional in vivo and immunophenotypic studies demonstrated that the generation of Id variants was an ongoing process both in cloned parental 38C13 cells and its variants.  相似文献   

3.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

4.
Two monoclonal antibodies against human IFN-alpha--one against natural leukocyte IFN-alpha and the other against recombinant human IFN-alpha 2 produced in E. coli--were prepared, and designated as HT-1, and 104-5-f, respectively. These monoclonal antibodies were used to examine the antigenicities of recombinant human IFN-alpha 5s produced by E. coli and by mouse cells. The HT-1 antibody could bind and neutralize recombinant human IFN-alpha 5 synthesized in mouse cells, but not recombinant human IFN-alpha 5 synthesized in E. coli. On the other hand, the 104-5-f antibody could bind and neutralize recombinant human IFN-alpha 5 synthesized in E. coli but not recombinant human IFN-alpha 5 synthesized in mouse cells. Then these monoclonal antibodies or sheep polyclonal antibody against human IFN-alpha were used to immunoprecipitate the radioactively labeled recombinant human IFN-alpha 5 synthesized either in E. coli or mouse cells, and analysed on polyacrylamide gel electrophoresis in the presence of NaDodSO4. The labeled recombinant human IFN-alpha 5 produced by mouse cells could be immunoprecipitated with the HT-1 monoclonal antibody or sheep anti-(human IFN-alpha) polyclonal antibody but not with the 104-5-f monoclonal antibody and showed a band of Mr. 17,500 on polyacrylamide gel electrophoresis in the presence of NaDodSO4. On the other hand, the labeled recombinant human IFN-alpha 5 produced by E. coli could be immunoprecipitated with the 104-5-f monoclonal antibody but not with the HT-1 monoclonal antibody and showed a band of similar Mr. on polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Recombinant monoclonal antibodies are beginning to revolutionize cancer therapy. In combination with standard chemotherapy, high response rates have been reported with antibodies of the human IgG1 isotype for treatment of non-Hodgkins lymphoma and breast cancer. It is becoming apparent that targets for antibody-based therapies do not necessarily need to be absent from normal tissues but can be present there either in low copy numbers or with binding epitopes shielded from the therapeutic antibody. Here, we studied whether claudin proteins that form tight junctions in normal epithelia are still expressed on carcinoma cells and whether their extracellular domains can be recognized by antibodies. We show that mRNAs of claudins 1, 3, 4, and 7 are all expressed in different human carcinoma cell lines, while claudin 8 was selectively expressed in breast and pancreas cancer lines. Chicken polyclonal antibodies were raised against peptides contained within predicted extracellular domains of claudins 1, 3, and 4. Affinity-purified IgG fractions for claudins 3 and 4 were monospecific and bound to human breast and colon carcinoma lines, but not to a line of monocytic origin. Claudin 3 antibodies also homogeneously stained human renal cell carcinoma tissue and micrometastatic tumor cells as identified by cytokeratin staining in bone marrow biopsies of breast cancer patients. Fluorescence-activated cell sorting and immunocytochemistry indicated that claudin antibodies bound to the surface of tumor cells. By analogy to other tumor-associated antigens that are differentially accessible to antibodies on tumor vs normal tissue, we propose that certain claudin proteins have potential as targets for novel antibody-based therapies of carcinomas.  相似文献   

6.
We have previously identified Id- tumor vaiants that emerge after anti-Id mAb therapy of the murine B cell lymphoma 38C13. This report characterizes the molecular basis for these variants. By using a modification of the polymerase chain reaction (PCR), mu and kappa Ig loci were sequenced from nine Id- variants derived directly by anti-Id immunoselection in vivo. Ig kappa loci sequence analysis was also performed from 10 additional variants amplified directly from tumor cells in vitro without immunoselection. We demonstrate that the molecular mechanism underlying tumor cell escape in this model is the spontaneous emergence of variants that have undergone kappa L chain gene "re-rearrangement" before positive selection by the anti-Id antibody. A second round of re-rearrangement was also demonstrated to occur within primary tumor variants. Re-rearrangement of the 38C13 tumor cell Ig kappa locus is strongly biased toward use of variable kappa genes within the conserved V kappa-Ox1 gene family, although their use is not exclusive. With the use of RNA PCR re-rearrangement was documented to occur in vitro at a frequency of approximately 1.0 x 10(-5)/cell. These findings may have important implications for the application of anti-Id antibodies as a therapeutic approach for human lymphomas and for understanding of the Ig gene rearrangement process.  相似文献   

7.
Persistent infection with mouse hepatitis virus (MHV) strain A59 in murine DBT (delayed brain tumor) cells resulted in the emergence of host range variants, designated V51A and V51B, at 210 days postinfection. These host range mutants replicated efficiently in normally nonpermissive Chinese hamster ovary (CHO), in human hepatocarcinoma (HepG2), and to a lesser extent in human breast carcinoma (MCF7) cell lines. Little if any replication was noted in baby hamster kidney (BHK), green African monkey kidney (COS-7), feline kidney (CRFK), and swine testicular (ST) cell lines. By fluorescent antibody (FA) staining, persistent viruses V10B and V30B, isolated at days 38 and 119 days postinfection, also demonstrated very low levels of replication in human HepG2 cells. These data suggest that persistence may rapidly select for host range expansion of animal viruses. Pretreatment of HepG2 cells with a polyclonal antibody directed against human carcinoembryonic antigens (CEA) or with some monoclonal antibodies (Col-1, Col-4, Col-12, and Col-14) that bind human CEA significantly inhibited V51B infection. Under identical conditions, little or no blockade was evident with other monoclonal antibodies (kat4c or Col-6) which also bind the human CEA glycoproteins. In addition, an antibody (EDDA) directed against irrelevant antigens did not block V51B replication. Pretreatment with the Col-4 and Col-14 antibodies did not block Sindbis virus replication in HepG2 cells or MHV infection in DBT cells, suggesting that one or more CEA glycoproteins likely functioned as receptors for V51B entry into human cell lines. To test this hypothesis, the human biliary glycoprotein (Bgp) and CEA genes were cloned and expressed in normally nonpermissive BHK cell lines by using noncytopathic Sindbis virus replicons (pSinRep19). By growth curves and FA staining, human CEA and to a much lesser extent human Bgp functioned as receptors for V51B entry. Furthermore, V51B replication was blocked with polyclonal antiserum directed against human CEA and Bgp. Under identical conditions, the parental MHV strain A59 failed to replicate in BHK cells expressing human Bgp or CEA. These data suggest that MHV persistence may promote virus cross-species transmissibility by selecting for virus variants that recognize phylogenetic homologues of the normal receptor.  相似文献   

8.
Development of humanized antibodies as cancer therapeutics   总被引:1,自引:0,他引:1  
Recent success in the development of monoclonal antibody-based anti-cancer drugs has largely benefitted from the advancements made in recombinant technologies and cell culture production. These reagents, derived from the antibodies of mouse origin, while maintaining the exquisite specificity and affinity to the tumor antigens, have low immunogenicity and toxicity in human. High-level expressing cell clones are generated and used to produce large quantities of the recombinant antibodies in bioreactors in order to meet the clinical demand for therapeutic applications. In this report, the systems and general methodologies developed by us to construct and produce humanized antibodies from the parent mouse antibodies are described. Once the humanized antibodies are available, they can be applied in three principal forms for cancer therapy: (1) naked antibodies, (2) drug- or toxin conjugates, and (3) radioconjugates. Using the humanized anti-CD22 (epratuzumab) and anti-carcinoembryonic antigen (ant-CEA; labetuzumab) antibody prototypes, clinical applications of naked and radiolabeled humanized monoclonal antibodies are described.  相似文献   

9.
《Translational oncology》2021,14(11):101205
Epidermal Growth Factor Receptor (EGFR) is overexpressed on a number of human cancers, and often is indicative of a poor outcome. Treatment of EGFR/HER2 overexpressing cancers includes monoclonal antibody therapy (cetuximab/trastuzumab) either alone or in conjunction with other standard cancer therapies. While monoclonal antibody therapy has been proven to be efficacious in the treatment of EGFR/HER2 overexpressing tumors, drawbacks include the lack of long-lasting immunity and acquired resistance to monoclonal therapy. An alternative approach is to induce a polyclonal anti-EGFR/HER2 tumor antigen response by vaccine therapy. In this phase I/II open-label study, we examined anti-tumor immunity in companion dogs with spontaneous EGFR expressing tumors. Canine cancers represent an outbred population in which the initiation, progression of disease, mutations and growth factors closely resemble that of human cancers. Dogs with EGFR expressing tumors were immunized with a short peptide of the EGFR extracellular domain with sequence homology to HER2. Serial serum analyses demonstrated high titers of EGFR/HER2 binding antibodies with biological activity similar to that of cetuximab and trastuzumab. Canine antibodies bound both canine and human EGFR on tumor cell lines and tumor tissue. CD8 T cells and IgG deposition were evident in tumors from immunized dogs. The antibodies inhibited EGFR intracellular signaling and inhibited tumor growth in vitro. Additionally, we illustrate objective responses in reducing tumors at metastatic sites in host animals. The data support the approach of amplifying anti-tumor immunity that may be relevant in combination with other immune modifying therapies such as checkpoint inhibitors.  相似文献   

10.
Modern anti-HER2 antibody therapy tends to exploit a panel of different antibodies against different epitopes on the antigen. For this aim, nanobodies are very striking targeting agents and can be easily produced against any cell-specific membrane antigen. The oligoclonal nanobodies can be used to block more than one functional epitope on a target antigen and inhibit the generation of escape variants associated with cancer therapy. In this study, 12 nanobody clones selected from an immune camel library were examined for their ability to differ between tumor markers. These oligoclonal nanobodies targeted breast cancer cells better than each individual nanobody. In epitope mapping, several nanobodies overlapped in the epitope recognized by trastuzumab and some of the non-overlapping nanobodies could affect the binding of trastuzumab to HER2. This study demonstrates that the oligoclonal nanobodies are potential therapeutic tools that can be used instead of, or in combination with trastuzumab to assess tumor viability during treatment.  相似文献   

11.
Despite fast advances in genomics and proteomics, monoclonal antibodies (mAbs) are still a valuable tool for areas such as the evolution of basic research in stem cells and cancer, for immunophenotyping cell populations, diagnosing and prognosis of diseases, and for immunotherapy. To summarize different subtractive immunization approaches successfully used for the production of highly specific antibodies, we identified scientific articles in NCBI PubMed using the following search terms: subtractive immunization, monoclonal antibody, tolerization, neonatal, high-zone tolerance, masking immunization. Patent records were also consulted. From the list of results, we included all available reports, from 1985 to present, that used any enhanced immunization technique to produce either polyclonal or monoclonal antibodies. Our examination yielded direct evidence that these enhanced immunization techniques are efficient in obtaining specific antibodies to rare epitopes, with different applications, such as to identify food contaminants or tumor cells.  相似文献   

12.
Using human cultured cell lines or lymphocytes, two kinds of murine- and one human-monoclonal antibodies were produced, respectively and their clinical usefulness were investigated, and the possibility of galactosyl-transferase as a new tumor maker was also discussed. (1) A murine monoclonal antibody MSN-1, which was raised against human endometrial cancer cell line and recognized blood type sugar chain Leb, reacted with about 85% of endometrial cancer tissues, indicating that useful clinical information may be obtained by applying MSN-1 to immunohistochemistry and flow cytometry. (2) A new assay system using two murine monoclonal antibodies MA54 and MA61, which were raised against human lung cancer cell line and reacted with mucin sugar residues, revealed 76% positive rate in ovarian cancer patients, especially 82% in mucinous cystadenocarcinoma, indicating the clinical effectiveness as a new tumor maker compensating for the drawbacks of CA-125. (3) Galactosyl-transferase isozyme GT-2 was analyzed by the assay system using a newly produced monoclonal antibody. GT-2 was positive in 74% of ovarian cancers, especially in 89% of meso-nephroid cancer, indicating that GT-2 could be a useful tumor maker in ovarian tumors. (4) Human monoclonal antibody, which recognized "type 1 sugar chain" or iso-paragloboside, reacted about one half of endometrial cancer tissues. The production of human monoclonal antibody may contribute to the cancer imaging and the missile therapy.  相似文献   

13.
Next to the already available mouse monoclonal and laboratory animal-derived polyclonal antibodies, recombinant antibodies offer an additional and virtually unlimited arsenal of new immunohistochemical research tools. The major advantages of recombinant antibodies are their rapid and easy generation against virtually any target. The avidity of antibody fragments can be increased by partial dimerisation. This can be achieved by fusion of CL domains derived of different species to recombinant antibody domains. The VL-linker-VH-CL constructs result in significantly lower dimerisation levels compared to the VH-linker-VL-CL antibody constructs. The most efficient dimerisation occurs with the Jun-tagged scFvs. The very large and rapidly expanding collection of recombinant antibodies already available combined with the ease of introducing various tag sequences allows for an almost unrestricted number of easily adjustable research tools. To our best knowledge we report for the first time that using CL domains derived from different species, in combination with readily available commercial secondary antibodies specific for these CL domains, provides an easy method for the application of recombinant monoclonal antibodies of various origins in immunohistochemical analyses eliminating the problem of co-staining with multiple mono- or polyclonal antibodies. Both double and triple labelling experiments can be performed successfully.  相似文献   

14.
The rabbit immune repertoire has long been a rich source of diagnostic polyclonal antibodies. Now it also holds great promise as a source of therapeutic monoclonal antibodies. On the basis of phage display technology, we recently reported the first humanization of a rabbit monoclonal antibody. The allotypic diversity of rabbit immunoglobulins prompted us to compare different rabbit immune repertoires for the generation and humanization of monoclonal antibodies that bind with strong affinity to antigens involved in tumor angiogenesis. In particular, we evaluated the diversity of unselected and selected chimeric rabbit/human Fab libraries that were derived from different kappa light chain allotypes. Most rabbit light chains have an extra disulfide bridge that links the variable and constant domains in addition to the two intrachain disulfide bridges shared with mouse and human kappa light chains. Here we evaluate the impact of this increased disulfide bridge complexity on the generation and selection of chimeric rabbit/human Fab libraries. We demonstrate that rabbits with mutant bas and wild-type parental b9 allotypes are excellent sources for therapeutic monoclonal antibodies. Featured among the selected clones with b9 allotype is a rabbit/human Fab that binds with a dissociation constant of 1nM to both human and mouse Tie-2, which will facilitate its evaluation in mouse models of human cancer. Examination of 228 new rabbit antibody sequences allowed for a comprehensive comparison of the LCDR3 and HCDR3 length diversity in rabbits. This study revealed that rabbits exhibit an HCDR3 length distribution more closely related to human antibodies than mouse antibodies.  相似文献   

15.
Selecting and screening recombinant antibody libraries   总被引:25,自引:0,他引:25  
During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.  相似文献   

16.
17.
《MABS-AUSTIN》2013,5(4):968-977
Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy.  相似文献   

18.
We have developed a method that allows the rapid improvement of the affinity of phage-displayed antibody fragments by selection on intact eukaryotic cells. A single chain Fv fragment, specific for the tumor-associated Ep-Cam molecule, was mutagenized by shuffling of the immunoglobulin light chain variable region and DNA shuffling of both heavy and light chain variable regions. Higher-affinity mutants were selected from small phage display libraries by cell panning under stringent conditions. When converted to an intact fully human antibody, the mutagenized anti-tumor monoclonal antibody displayed an affinity of 0.4 nM, a 15-fold improvement over the affinity of the original antibody. Compared to previously reported affinity maturation schemes, panning on intact cells does not require purified targets for selection and may be particularly useful when the target molecule can not be expressed as a recombinant molecule or easily purified without disrupting its native configuration. In vitro tumor cell killing assays demonstrated an improved performance of the higher-affinity antibody in complement-mediated tumor cell killing. In contrast, the lower-affinity antibody performed somewhat better in antibody-dependent cellular cytotoxicity assays and penetrated better in multicell spheroids of tumor cells, an in vitro model for the tumor penetration capacity of antibodies. Received: 26 February 2000 / Accepted: 26 January 2001  相似文献   

19.
张勇 《生物学杂志》2002,19(5):35-37
通过基因工程可以大规模地制备能与人相容的单克隆抗体或片段。其中,噬菌体抗体抗库技术可以模拟体内抗体产生和成熟过程,不经细胞杂交,甚至不经免疫制备针对任何抗原的单克隆抗体。就基因工程抗体及噬菌抗体库技术的发展与应用作一概述 。  相似文献   

20.
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.Key words: human antibody library, phage display, oncofetal fibronectin, vascular tumor targeting, scFv antibody fragments, chelating recombinant antibody (CRAb)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号