首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

2.
Candida rugosa lipase crude preparations (CRL) catalyse the regioselective acylation of methyl 6-O-trytil beta-d-glucopyranoside in organic solvents, using vinyl acetate as acyl donor. The ratio of the two products formed, namely methyl 2-O acetyl 6-O-trytil beta-d-glucopyranoside and methyl 3-O acetyl 6-O-trytil beta-d-glucopyranoside was found to be markedly affected by the nature of the reaction medium. In hydrophobic solvents values up to 80% of the monoacetylated product in position C-3 were obtained compared to less than 30% in solvents with low hydrophobicity. Computational studies were carried out to simulate the interactions between methyl 6-O-trytil beta-d-glucopyranoside and both CRL and the solvents, in order to rationalize the experimental results.  相似文献   

3.
The hydroxyl group stereochemistry of complexation of sodium vanadate(V) with Me alpha-Manp, Me alpha- and beta-Galp and selected O-methyl derivatives in D(2)O was determined by 51V, 1D and 2D 13C NMR spectroscopy at pD 7.8. The 51V approach served to show the extent of complexation and the minimum number of esters formed. That of Me alpha-Manp gave rise mainly to a 51V signal at delta -515, identical with that of its 4,6-di-O-methyl derivative, which had only a 2,3-cis-diol exposed. The 13C NMR spectra contained much weaker signals of the complexes, but both glycosides showed strong C-2 and C-3 alpha-shifts of +17.3 and +10.8 ppm, respectively. As expected, Me 2,3-Me(2)-alpha-Manp, which contains a 4,6-diol, did not complex. Me Galp anomers and their derivatives showed more diversity in the structure of its oxyvanadium derivatives. Me alpha-Galp, with its 3,4-cis-diol, complexed to give rise to 51V signals at delta -495 (9%), -508 (10%), and -534 (4%). These shifts and proportions were maintained with Me beta-Galp and Me 6Me-alpha-Galp. 51V NMR spectroscopy showed that Me 3Me-beta-Galp, with its possibly available 4,6-diol, did not complex. Similarly, Me alpha-Galp+vanadate gave a 13C DEPT spectrum that did not contain an inverted signal at delta >71.4, as would be expected of a C-6 resonance suffering a strong downfield alpha-shift. Me 2,6-Me(2)-alpha-Galp, with a 3,4-cis-diol group, gave rise to two 51V signals of complexes at delta -492 (9%) and -508 (9%), showing more than one structure of oxyvanadium derivatives.  相似文献   

4.
The binding of Ru(phen)(2)dppz(2+) (dppz=dipyrido[3,2-a:2',3'-c]phenazine) to DNA was investigated at pH 7.0 and 25 degrees C using stopped-flow and spectrophotometric methods. Equilibrium measurements show that two modes of binding, whose characteristics depend on the polymer to dye ratio (C(P)/C(D)), are operative. The binding mode occurring for values of C(P)/C(D) higher than 3 exhibits positive cooperativity, which is confirmed by kinetic experiments. The reaction parameters are K=2 x 10(3)M(-1), omega=550, n=1, k(r)=(1.9+/-0.5) x 10(7)M(-1)s(-1) and k(d)=(9.5+/-2.5)x10(3)s(-1) at I=0.012 M. The results are discussed in terms of prevailing surface interaction with DNA grooves accompanied by partial intercalation of the dppz residue. The other binding mode becomes operative for C(P)/C(D)<3 and the equilibria analysis shows this is an ordinary intercalation mode (K=1.3 x 10(6) M(-1), n=1.5 at I=0.012 M and K=2 x 10(5) M(-1), n=1.2 at I=0.21 M). Similar behaviour is displayed by double-stranded poly(A).  相似文献   

5.
Carbohydrates containing galactopyranosyl and mannopyranosyl units with vicinal cis-diols were treated with NaVO(3) in D(2)O, and complexation was determined by (51)V NMR spectroscopy. Me alpha-Galp, Me beta-Galp (3,4-cis-diols), and Me alpha-Manp (2,3-cis-diol) complexed, but Me beta-Manp barely did so. This low degree of complexation also occurred with a beta-mannan containing alternate (1-->3)- and (1-->4)-linkages and an alginate having beta-ManpA blocks. In contrast, branched alpha-mannans complexed readily, although the (51)V resonances for one with side chains terminated with alpha-Manp-(1-->3)-alpha-Manp-(1--> differed from another with only alpha-Manp-(1-->2)-alpha-Manp-(1--> groups. The anomeric configuration of Me alpha-Galp and Me beta-Galp, each with 3,4-cis-diols remote from C-1, gave rise to three (51)V signals of complexes with similar shifts and proportions. The shifts of a galactomannan with terminal alpha-Galp-(1-->2)-alpha-Manp- were the same as those with alpha-Galp-(1-->6)-beta-Manp- groups, but fewer complexes were formed with the former structure, probably due to greater steric crowding of the vanadate esters. Most of the complexes gave rise to a signal in the delta515 region, consistent with the dimeric trigonal-bipyramidal structure.  相似文献   

6.
Methyl groups provide an important source of structural and dynamic information in NMR studies of proteins and their complexes. For this purpose sequence-specific assignments of methyl 1H and 13C resonances are required. In this paper we propose the use of 13C-detected 3D HN(CA)C and HMCMC experiments for assignment of methyl 1H and 13C resonances using a single selectively methyl protonated, perdeuterated and 13C/15N-labeled sample. The high resolution afforded in the 13C directly-detected dimension allows one to rapidly and unambiguously establish correlations between backbone HN strips from the 3D HN(CA)C spectrum and methyl group HmCm strips from the HMCMC spectrum by aligning all possible side-chain carbon chemical shifts and their multiplet splitting patterns. The applicability of these experiments for the assignment of methyl 1H and 13C resonances is demonstrated using the 18.6 kDa B domain of the Escherichia coli mannose transporter (IIBMannose).  相似文献   

7.
To define the mechanism of arsenite-induced tumor promotion, we examined the role of reactive oxygen species (ROS) in the signaling pathways of cells exposed to arsenite. Arsenite treatment resulted in the persistent activation of p70(s6k) and extracellular signal-regulated kinase 1/2 (ERK1/2) which was accompanied by an increase in intracellular ROS production. The predominant produced appeared to be H(2)O(2), because the arsenite-induced increase in dichlorofluorescein (DCF) fluorescence was completely abolished by pretreatment with catalase but not with heat-inactivated catalase. Elimination of H(2)O(2) by catalase or N-acetyl-L-cysteine inhibited the arsenite-induced activation of p70(s6k) and ERK1/2, indicating the possible role of H(2)O(2) in the arsenite activation of the p70(s6k) and the ERK1/2 signaling pathways. A specific inhibitor of p70(s6k), rapamycin, and calcium chelators significantly blocked the activation of p70(s6k) induced by arsenite. While the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 completely abrogated arsenite activation of p70(s6k), ERK1/2 activation by arsenite was not affected by these inhibitors, indicating that H(2)O(2) might act as an upstream molecule of PI3K as well as ERK1/2. Consistent with these results, none of the inhibitors impaired H(2)O(2) production by arsenite. DNA binding activity of AP-1, downstream of ERK1/2, was also inhibited by catalase, N-acetyl-L-cysteine, and the MEK inhibitor PD98059, which significantly blocked arsenite activation of ERK1/2. Taken together, these studies provide insight into mechanisms of arsenite-induced tumor promotion and suggest that H(2)O(2) plays a critical role in tumor promotion by arsenite through activation of the ERK1/2 and p70(s6k) signaling pathways.  相似文献   

8.
Zhang F  Vasella A 《Carbohydrate research》2007,342(17):2546-2556
Partially deuteriated 1,5,6,6-(2)H(4)-d-glucose and 1(I),1(II),5(I),5(II),6(I),6(I),6(II),6(II)-(2)H(8)-d-cellobiose were synthesized in high yields and on a large scale from d-glucose. (2)H enrichment at C-5 and C-6 of each glucopyranosyl unit in excess of 85% and 90%, respectively, was realized by (1)H-(2)H exchange in (2)H(2)O containing deuteriated Raney Ni. Nucleophilic addition of LiAlD(4) to 5,6,6-(2)H(3)-2,3,4,6-tetra-O-benzyl-d-gluconolactone led to a 98% (2)H enrichment at C-1. Deuteriated cellobiose is of interest as building block for the synthesis of a model compound of cellulose I.  相似文献   

9.
1,3-Butadiene was oxidized by human myeloperoxidase in the absence of KCl to yield butadiene monoxide (BM) and crotonaldehyde (CA), but at KCl concentrations higher than 50 mM, 1-chloro-2-hydroxy-3-butene (CHB) was the major metabolite detected; metabolite formation was dependent on incubation time, pH, KCl, 1,3-butadiene, and H2O2 concentrations. The data are best explained by 1,3-butadiene being oxidized by myeloperoxidase by two different mechanisms. First, oxygen transfer from the hemoprotein would occur to either C-1 or C-4 of 1,3-butadiene to form an intermediate which may cyclize to form BM or undergo a hydrogen shift to form 3-butenal, an unstable precursor of CA. Further evidence for this mechanism was provided by the inability to detect methyl vinyl ketone, a possible product of an oxygen transfer reaction to C-2 or C-3 of 1,3-butadiene, and by the finding that CA was not simply a decomposition product of BM under assay conditions. In the second mechanism, however, chloride ion is oxidized by myeloperoxidase to HOCl which reacts with 1,3-butadiene to yield CHB. Further evidence for this mechanism was provided by the finding that CHB was readily formed when 1,3-butadiene was added to the filtrate of a myeloperoxidase/H2O2/KCl incubation and when 1,3-butadiene was allowed to react with authentic HOCl. In addition, CHB was not detected when BM or CA was incubated with myeloperoxidase, H2O2, and KCl for up to 60 min, or when 1,3-butadiene and KCl were incubated with chloroperoxidase and H2O2 or with mouse liver microsomes and NADPH, enzyme systems which catalyze 1,3-butadiene oxidation to BM and CA, but unlike myeloperoxidase, do not catalyze chloride ion oxidation to HOCl. These results provide clear evidence for novel olefinic oxidation reactions by myeloperoxidase.  相似文献   

10.
1. A series of d-galactose derivatives substituted at C-1 and C-6 were tested for active accumulation by everted segments of hamster and rat intestine. 2. d-Galactose and 6-deoxy-6-fluoro-d-galactose were accumulated far more rapidly than 6-deoxy- and 6-chloro-6-deoxy-d-galactose, and this is interpreted as due to hydrogen-bonding at C-6 during the transport process. 3. 6-Bromo-6-deoxy- and 6-deoxy-6-iodo-d-galactose were not actively transported, indicating that the allowed size of substituent at C-6 lies between that of chlorine and bromine atoms. 4. Similar results were obtained at C-1. Both methyl alpha-d-galactopyranoside and methyl beta-d-galactopyranoside were well transported, but methyl beta-d-thiogalactopyranoside and 1-deoxy-d-galactose were not transported; d-galactopyranosyl fluoride was transported, but only poorly. Again hydrogen-bonding is suggested. 5. It is proposed that d-glucose is the ideal structure for active transport and that binding occurs at C-1, C-2, C-3, C-4 and C-6. Loss of two or more of these bonds usually causes loss of active transport. 6. By plotting Lineweaver-Burk plots of the rates of transport of the galactose derivatives, the apparent V and K(m) values were obtained. With hamster intestine both these values were very reproducible. Contrary to expectation, V varied for different sugars. 7. The K(i) of some of the analogues modified at C-1 and C-6 was determined with methyl alpha-d-glucoside as substrate. 8. An attempt to alkylate the carrier by using methyl 3,4-anhydro-alpha-d-galactoside was unsuccessful. There was no evidence that this compound was bound to the carrier.  相似文献   

11.
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels.  相似文献   

12.
Deprotonation of D-mannitol was studied in aqueous basic solutions by means of potentiometry and (13)C NMR spectroscopy. Two-step dissociation in the pH range from 12 to 13.8 was shown, and successive dissociation constants K(a1) and K(a2) were determined. In a solution with ionic strength I = 1.0 M (NaOH + NaNO(3)) pK(a1) = 13.1 +/- 0.1 and pK(a2) = 13.8 +/- 0.2. With increasing ionic strength from 0.75 to 3.0 M, both pK(a1) and pK(a2) values decrease. Deprotonation-induced chemical shifts in pH-variable (13)C NMR spectra show that the OH-groups next to internal carbon atoms C-3 and C-4 dissociate to a greater extent compared to OH-groups next to external carbon atoms C-1 and C-6.  相似文献   

13.
The reaction of (13S,9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (1a), one of the major peroxidation products of linoleic acid and an important physiological mediator, with the Fenton reagent (Fe(2+)/EDTA/H(2)O(2)) was investigated. In phosphate buffer, pH 7.4, the reaction proceeded with >80% substrate consumption after 4h to give a defined pattern of products, the major of which were isolated as methyl esters and were subjected to complete spectral characterization. The less polar product was identified as (9Z,11E)-13-oxo-9,11-octadecadienoate (2) methyl ester (40% yield). Based on 2D NMR analysis the other two major products were formulated as (11E)-9,10-epoxy-13-hydroxy-11-octadecenoate (3) methyl ester (15% yield) and (10E)-9-hydroxy-13-oxo-10-octadecenoate (4) methyl ester (10% yield). Mechanistic experiments, including deuterium labeling, were consistent with a free radical oxidation pathway involving as the primary event H-atom abstraction at C-13, as inferred from loss of the original S configuration in the reaction products. Overall, these results provide the first insight into the products formed by oxidation of 1a with the Fenton reagent, and hint at novel formation pathways of the hydroxyepoxide 3 and hydroxyketone 4 of potential (patho)physiological relevance in settings of oxidative stress.  相似文献   

14.
Cao D  Hu N 《Biophysical chemistry》2006,121(3):209-217
Alternate adsorption of negatively charged Fe(3)O(4) nanoparticles from their pH 8.0 aqueous dispersions and positively charged hemoglobin (Hb) from its pH 5.5 buffers on solid substrates resulted in the assembly of {Fe(3)O(4)/Hb}(n) layer-by-layer films. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor and confirm the film growth. A pair of well-defined, nearly reversible CV peaks for HbFe(III)/Fe(II) redox couples was observed for {Fe(3)O(4)/Hb}(n) films on pyrolytic graphite (PG) electrodes. Although the multilayered films grew linearly with the number of Fe(3)O(4)/Hb bilayers (n) and the amount of Hb adsorbed in each bilayer was generally the same, the electroactive Hb could only extend to 6 bilayers. This indicates that only those Hb molecules in the first few bilayers closest to the electrode surface are electroactive. The electrochemical parameters such as the apparent heterogeneous electron transfer rate constant (k(s)) were estimated by square wave voltammetry (SWV) and nonlinear regression. The Soret absorption band position of Hb in {Fe(3)O(4)/Hb}(6) films showed that Hb in the films retained its near native structure in the medium pH range. The {Fe(3)O(4)/Hb}(6) film electrodes also showed good biocatalytic activity toward reduction of oxygen, hydrogen peroxide, trichloroacetic acid, and nitrite. The electrochemical reduction overpotentials of these substrates were lowered significantly by {Fe(3)O(4)/Hb}(n) films.  相似文献   

15.
The multifunctional cytochrome P450 monooxygenases P450-1 and P450-2 from Fusarium fujikuroi catalyze the formation of GA14 and GA4, respectively, in the gibberellin (GA)-biosynthetic pathway. However, the activity of these enzymes is qualitatively and quantitatively different in mutants lacking the NADPH:cytochrome P450 oxidoreductase (CPR) compared to CPR-containing strains. 3beta-Hydroxylation, a major P450-1 activity in wild-type strains, was strongly decreased in the mutants relative to oxidation at C-6 and C-7, while synthesis of C19-GAs as a result of oxidative cleavage of C-20 by P450-2 was almost absent whereas the C-20 alcohol, aldehyde and carboxylic acid derivatives accumulated. Interaction of the monooxygenases with alternative electron transport proteins could account for these different product distributions. In the absence of CPR, P450-1 activities were NADH-dependent, and stimulated by cytochrome b5 or by added FAD. These properties as well as the decreased efficiency of P450-1 and P450-2 in the mutants are consistent with the participation of cytochrome b5:NADH cytochrome b5 reductase as redox partner of the gibberellin monooxygenases in the absence of CPR. We provide evidence, from either incubations of GA12 (C-20 methyl) with cultures of the mutant suspended in [18O]H2O or maintained under an atmosphere of [18O]O2:N2 (20:80), that GA15 (C-20 alcohol) and GA24 (C-20 aldehyde) are formed directly from dioxygen and not from hydrolysis of covalently enzyme-bound intermediates. Thus these partially oxidized GAs correspond to intermediates of the sequential oxidation of C-20 catalyzed by P450-2.  相似文献   

16.
1alpha,25-Dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) (ED-71), an analog of active vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is under phase III clinical trials in Japan for the treatment of osteoporosis and bone fracture prevention. Since ED-71 has a substituent at the 2beta-position of the A-ring, it is recognized that the metabolic pathway of ED-71 might be more complicated than 1,25(OH)(2)D(3) because of metabolism at the 2beta-position substituent in addition to the inherent metabolism of the side chain. To clarify the metabolism of hydroxypropoxy substituent of the 2beta-positon and a combination of metabolism between side chain and 2beta-positon, four putative metabolites of ED-71 have been prepared as authentic samples. The metabolites at the 2beta-positon, the methyl ester derivative considered as an ester standard of the oxidized metabolite and the tetraol derivative as the truncated metabolite were synthesized from alpha-epoxide, a key intermediate of ED-71 synthesis. The combination metabolites between side chain and 2beta-positon, the 24(S)- and 24(R)-pentaols were synthesized using Trost's convergent method.  相似文献   

17.
Recently, epimerization of the hydroxyl group at C-3 has been identified as a unique metabolic pathway of vitamin D compounds. We measured C-3 epimerization activity in subcellular fractions prepared from cultured cells and investigated the basic properties of the enzyme responsible for the epimerization. C-3 epimerization activity was detected using a NADPH-generating system containing glucose-6-phosphate, NADP, glucose-6-phosphate dehydrogenase, and Mg(2+). The highest level of activity was observed in a microsomal fraction prepared from rat osteoblastic UMR-106 cells but activity was also observed in microsomal fractions prepared from MG-63, Caco-2, Hep G2, and HUH-7 cells. In terms of maximum velocity (V(max)) and the Michaelis constant (K(m)), 25-hydroxyvitamin D(3) [25(OH)D(3)] exhibited the highest specificity for the epimerization at C-3 among 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], 25(OH)D(3), 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], and 22-oxacalcitriol (OCT). The epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha-->beta)hydroxysteroid epimerase (HSE) catalyzed the epimerization in vitro. Based on these results, the enzyme(s) responsible for the epimerization of vitamin D(3) at C-3 are thought to be located in microsomes and different from cytochrome P450 and HSE.  相似文献   

18.
Mn porphyrins are among the most efficient SOD mimics with potency approaching that of SOD enzymes. The most potent ones, Mn(III) N-alkylpyridylporphyrins bear positive charges in a close proximity to the metal site, affording thermodynamic and kinetic facilitation for the reaction with negatively charged superoxide. The addition of electron-withdrawing bromines onto beta-pyrrolic positions dramatically improves thermodynamic facilitation for the O2*- dismutation. We have previously characterized the para isomer, Mn(II)Br(8)TM-4-PyP(4+) [Mn(II) beta-octabromo-meso-tetrakis(N-methylpyridinium-4-yl)porphyrin]. Herein we fully characterized its meta analogue, Mn(II)Br(8)TM-3-PyP(4+) with respect to UV/vis spectroscopy, electron spray mass spectrometry, electrochemistry, O2*- dismutation, metal-ligand stability, and the ability to protect SOD-deficient Escherichia coli in comparison with its para analogue. The increased electron-deficiency of the metal center stabilizes Mn in its +2 oxidation state. The metal-centered Mn(III)/Mn(II) reduction potential, E((1/2))=+468 mV vs NHE, is increased by 416 mV with respect to non-brominated analogue, Mn(III)TM-3-PyP(5+) and is only 12 mV less positive than for para isomer. Yet, the complex is significantly more stable towards the loss of metal than its para analogue. As expected, based on the structure-activity relationships, an increase in E((1/2)) results in a higher catalytic rate constant for the O2*- dismutation, log k(cat)> or =8.85; 1.5-fold increase with respect to the para isomer. The IC(50) was calculated to be < or =3.7 nM. Manipulation of the electron-deficiency of a cationic porphyrin resulted, therefore, in the highest k(cat) ever reported for a metalloporphyrin, being essentially identical to the k(cat) of superoxide dismutases (log k(cat)=8.84-9.30). The positive kinetic salt effect points to the unexpected, unique and first time recorded behavior of Mn beta-octabrominated porphyrins when compared to other Mn porphyrins studied thus far. When species of opposing charges react, the increase in ionic strength invariably results in the decreased rate constant; with brominated porphyrins the opposite was found to be true. The effect is 3.5-fold greater with meta than with para isomer, which is discussed with respect to the closer proximity of the quaternary nitrogens of the meta isomer to the metal center than that of the para isomer. The potency of Mn(II)Br(8)TM-3-PyP(4+) was corroborated by in vivo studies, where 500 nM allows SOD-deficient E. coli to grow >60% of the growth of wild type; at concentrations > or =5 microM it exhibits toxicity. Our work shows that exceptionally high k(cat) for the O2*- disproportionation can be achieved not only with an N(5)-type coordination motif, as rationalized previously for aza crown ether (cyclic polyamines) complexes, but also with a N(4)-type motif as in the Mn porphyrin case; both motifs sharing "up-down-up-down" steric arrangement.  相似文献   

19.
Cyanovirin-N (CVN) is a novel cyanobacterial protein that selectively binds with nanomolar affinities the mammalian oligosaccharides Man(8) and Man(9). Consequently, CVN potently blocks HIV entry through highly avid carbohydrate-mediated interactions with the HIV-envelope glycoprotein gp120, and is under preclinical investigation as an anti-HIV microbicide. CVN contains two non-overlapping carbohydrate-binding sites that bind the disaccharide Manalpha(1-2)Manalpha (which represents the terminal disaccharide of all three arms of Man(9)) with low to sub-micromolar affinities. The solution structure of a 1:2 CVN:Manalpha(1-2)Manalpha complex revealed that CVN recognizes the stacked conformation of Manalpha(1-2)Manalpha through a deep hydrophilic-binding pocket on one side of the protein (site 2) and a semi-circular cleft on the other (site 1). With the prominent exception of the C1 hydroxyl group of the reducing mannopyranose ring, the bound disaccharide is positioned so that each hydroxyl group is involved in a direct or water-mediated hydrogen bond to the polar or charged side-chains comprising the binding pocket. Thus, to determine whether the next-most reducing mannopyranose ring will augment CVN affinity and selectivity, we have characterized by NMR and ITC the binding of CVN to three synthetic trisaccharides representing the full-length D1, D2 and D3 arms of mammalian oligomannosides. Our findings demonstrate that site 1 is able to discriminate between the three related trisaccharides methyl Manalpha(1-2)Manalpha(1-2)Man, methyl Manalpha(1-2)Manalpha(1-3)Man and methyl Manalpha(1-2)Manalpha(1-6)Man with remarkable selectivity, and binds these trisaccharides with K(A) values ranging from 8.1x10(3)M(-1) to 6.6x10(6)M(-1). Site 2 is less selective in that it binds all three trisaccharides with similar K(A) values ranging from 1.7 to 3.7(+/-0.3)x10(5)M(-1), but overall binds these trimannosides with higher affinities than site 1. The diversity of pathogenic organisms that display alpha(1-2)-linked mannosides on their cell surfaces suggests a broad defensive role for CVN in its cyanobacterial source.  相似文献   

20.
The combined effect of NaCl, KCl, CaCl(2), and MgCl(2) on the water activity (a (w)) and the growth parameters of Saccharomyces cerevisiae was studied by means of a D-optimal mixture design with constrains (total salt concentrations < or = 9.0%, w/v). The a (w) was linearly related to the concentrations of the diverse salts; its decrease, by similar concentrations of salts, followed the order NaCl > CaCl(2) > KCl > MgCl(2), regardless of the reference concentrations used (total absence of salts or 5% NaCl). The equations that expressed the maximum specific growth (mu (max)), lag phase duration (lambda), and maximum population reached (N (max)) showed that the values of these parameters depended on linear effects and two-way interactions of the studied chloride salts. The mu (max) decreased as NaCl and CaCl(2) increased (regardless of the presence or not of previous NaCl); however, in the presence of a 5% NaCl, a further addition of KCl and MgCl(2) markedly increased mu (max). The lambda was mainly affected by MgCl(2) and the interactions NaCl x CaCl(2) and CaCl(2) x MgCl(2). The further addition of NaCl and CaCl(2) to a 5% NaCl medium increased the lag phase while KCl and MgCl(2) had negligible or slightly negative effect, respectively. N (max) was mainly affected by MgCl(2) and its interactions with NaCl, KCl, and CaCl(2); MgCl(2) stimulated N (max) in the presence of 5% NaCl while KCl, NaCl, and CaCl(2) had a progressive decreasing effect. These results can be of interest for the fermentation and preservation of vegetable products, and foods in general, in which this yeast could be present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号