首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The area of oil palm plantations in Malaysia is expanding by approximately 0.14 million hectare per year, and with the increasing demand for palm oil worldwide, there is no sign of the expansions slowing down. This study aims to identify the greenhouse gas emissions associated with land conversion to oil palm, in a life cycle perspective.

Methods

LCA methodology is applied to existing land use change data. The assessment includes the issue of temporary carbon storage in the plantations. Through quantification of emissions from state forest reserve and rubber plantation conversions, the average Malaysian palm oil-related land use changes are calculated.

Results and discussion

The results show that there are high emissions associated with the conversion of Malaysian state forest reserve to oil palm, whereas the conversion of rubber leaves a less significant carbon debt when indirect land use change is not included. Looking at the average Malaysian land use changes associated with oil palm shows that land use change emissions are responsible for approximately half of the total conventional biodiesel production emissions. The sensitivity analysis shows that the results could be significantly influenced by data variations in indirect land use changes, peat soils, and state forest reserve carbon stock.

Conclusions

The relatively extensive conversions of the state forest reserve must be reversed and preferably with a shift toward conversion of degraded land in order for the average Malaysian land use changes to have less impact on the production life cycle of palm oil and biodiesel.  相似文献   

2.
Riparian forests are increasingly threatened by urban expansion and land use change worldwide. This study examined the relationships between landscape characteristics and woody plant diversity, structure, and composition of small order riparian corridors along an urban-rural land use gradient in the Georgia Piedmont, US. Riparian plant diversity, structure, and composition were related to landscape metrics and land use. Species richness was negatively associated with impervious surfaces and landscape diversity, and positively associated with forest cover and largest forest patch index. Shannon species diversity was strongly related to the biomass of non-native species, especially for the regeneration layer. Urban sites were characterized by high richness of non-native and pioneer species. Developing sites were dominated by the non-native shrub, Ligustrum sinense Lour., and several native overstory trees, mainly Acer negundo L. While agricultural and managed forest sites were composed of ubiquitous species, unmanaged forest sites had a structurally distinct midstory indicative of reduced disturbance. Urban and agricultural land uses showed decreased native stem densities and signs of overstory tree regeneration failure. Results from this study highlight the impact of the surrounding landscape matrix upon riparian forest plant diversity and structure.  相似文献   

3.
1. Modification of floodplain morphology and land use is widely recognized as a major threat to fish communities of river–floodplain systems. We assess habitat associations of major exploited fish species in the Lower Amazon, where modifications are more extensive than in the Central or Upper Amazon. 2. Habitat was characterized in terms of physical environment, vegetation cover, distance from river and mean depth. Habitat associations of late juvenile and adult fish of the 14 major exploited species were established by comparing the distribution of the habitat sampled with the distribution of the habitat sampled weighed by a fish abundance index (catch per unit of effort). 3. Eight species showed significant habitat associations, generally being most abundant in floodplain lakes. Five of these eight species were associated with open water. Of the three exceptions, two preferred flooded forest lakes and another macrophyte‐dominated channels. The majority of those species with significant associations also preferred waters shallower than 7.25 m and relatively distant from the river mainstream. 4. While flooded forest is often assumed to be a key habitat for Amazon fish, only two of the main exploited species in the Lower Amazon had a significant association with this habitat. The majority of exploited species, including one that is associated with flooded forest in the central and upper Amazon, either showed no habitat associations or preferred open water lakes. The full range of pristine and modified floodplain habitats should be considered as important to fish conservation and fisheries productivity.  相似文献   

4.
A survey of epiphytes in Gambari Forest Reserve in Southwestern Nigeria was undertaken. A total of 26 epiphytes were recorded. These include five pteridophytes and 21 angiosperm species belonging to the following families; Acanthaceae, Araceae, Asteraceae, Commelinaceae, Moraceae, Orchidaceae, Palmae, Urticaceae Piperaceae, and Portulacaceae. The smooth-barked phorophytes had only one or two epiphytes on them because they are unable to accumulated dust, debris and moisture for germination and growth of the epiphytes. The palm trees with rough barks had points at which they can collect soil, nutrients and moisture for epiphytic growth, hence all the epiphytic species recorded on the site were present on palm trees. Presence of many of the epiphytes is thought to be due to the availability of propagules from reproducing adults in the surrounding vegetation. Also, epiphytes appear to have a dressing effect on the palm trees.  相似文献   

5.
Recent studies on phenotypic plasticity of plant traits indicate that within-species variation in litter quality may be a significant factor that feeds back on litter decomposition and nutrient cycling rates at the stand level. These findings may be especially significant for understanding biodiversity-stability relationships in species-poor ecosystems that have little functional redundancy among primary producers. We tested the null hypothesis that black spruce and Kalmia were functional equivalents with respect to their structuring roles of subordinate vegetation and their influence on site biogeochemistry. The purpose of the study was to determine the degree to which forest cover exerts top-down control on community structure and function of Kalmia-black spruce communities. This community type dominates much of the forest understory and unforested heathlands in Atlantic Canada. We intensively studied a representative stand of Kalmia heath in Terra Nova National Park in eastern Newfoundland. Thirty-two 0.5 m × 0.5 m sample plots were randomly distributed among five transects bisecting gradients in dominance of black spruce and Kalmia. Light levels, species composition, vascular plant cover and soil respiration rate were determined for each plot. Tissue samples of litter, mature and current year leaves of Kalmia were collected and analyzed for nutrient status. Herbaceous species richness and cover peaked at intermediate light levels. Kalmia foliar N concentration and above-ground biomass increased with increasing shade. Soil respiration rates were strongly related to the light gradient and increased with increasing quality of Kalmia litter inputs. Our data indicate that Kalmias vigour and foliar nitrogen concentrations are greater under black spruce canopy as opposed to heath condition and that the shaded phenotype has relatively benign feedbacks on soil productivity compared to the open-habitat phenotype. In the absence of functional diversity at the species level in these species-poor habitats, phenotypic plasticity in Kalmia appears to be an important dimension of the biodiversity-stability relationship in these communities since our data suggest that this species has the potential either to inhibit or facilitate carbon cycling and the pathway is strongly linked to the presence or absence of overstory cover. The role of forest regeneration as an indirect control of forest soil processes such as carbon and nitrogen cycling in this ecosystem is discussed.  相似文献   

6.
Modifications of the Illinois River and associated tributaries have resulted in altered hydrologic cycles and persistent river‐floodplain connections during the growing season that frequently impede the establishment of hydrophytic vegetation and have reduced value for migratory waterfowl and other waterbirds. To help guide floodplain restoration, we compared energetic carrying capacity for waterfowl in two wetland complexes along the Illinois River under different management regimes during 2012–2015. The south pool of Chautauqua National Wildlife Refuge (CNWR) was seasonally flooded due to a partial river connection and managed for moist‐soil vegetation. Emiquon Preserve was hydrologically isolated from the Illinois River by a high‐elevation levee and managed as a semipermanently flooded emergent marsh. Semipermanent emergent marsh management at Emiquon Preserve produced 5,495 energetic use‐days (EUD)/ha for waterfowl and other waterbirds across wetland cover types and years, and seasonal moist‐soil management at CNWR produced 6,199 EUD/ha in one of 4 years. At Emiquon Preserve, the aquatic bed cover type produced 9,660 EUD/ha, followed by 5,261 EUD/ha in moist‐soil, 1,398 EUD/ha in persistent emergent, 1,185 EUD/ha in hemi‐marsh, and 12 EUD/ha in open water cover types. At CNWR, the annual grass and sedge cover type produced 7,031 EUD/ha, followed by 5,618 EUD/ha in annual broadleaf and 1,305 EUD/ha in perennial grass cover types. Restoration of floodplain wetlands in isolation from frequent flood pulses during the growing season can produce hemi‐marsh and aquatic bed vegetation communities that provide high‐quality habitat for waterfowl and which have been mostly eliminated from large river systems in the Midwest, U.S.A.  相似文献   

7.
To increase our understanding of the impact of land use/cover changes on soil microbial decomposition genes involved in organic carbon decomposition, we analyzed soil samples in four sites with different land cover/use histories in a subalpine region of western Sichuan. One site was in a primitive Abies faxoniana forest, the second and the third sites were spruce plantations established in 1960's and 1980's, respectively, and the fourth site was in a cropland dating back to 1960's. The genomic DNA from the microbial community was isolated and hybridized against a functional gene microarray containing 1,961 probes. There were 39, 62, 41, and 28 gene probes with statistically significant positive signals and the gene diversity index (H') values were 3.59, 4.04, 3.70 and 3.16 in primitive forest, spruce plantations established in 1960s and 1980s and cropland, respectively. The results suggested that the number of functional genes and the gene diversity index were correlated with increasing amounts of soil organic carbon, except in the primitive Abies faxoniana forest site. cluster analysis demonstrated that primitive forest soil was clustered more closely to soil from the spruce plantation established in 1960s.  相似文献   

8.
ABSTRACT

Background: Quantitative effects of large-scale oil palm expansion in the Neotropics on biodiversity and carbon stocks are still poorly documented.

Aims: We evaluated differences in tree species composition and richness, and above-ground carbon stocks among dominant land cover types in Pará state, Brazil.

Methods: We quantified tree species composition and richness and above-ground carbon stock in stands in remnant primary rain forest, young secondary forest, oil palm plantation and pastures.

Results: We sampled 5,696 trees with a DBH ≥ 2 cm, of 413 species in 68 families, of which 381 species were recorded in primary forest fragments. We found significant differences in species richness and carbon stock among the four land cover classes. Carbon stocks in remnant primary forest were typically over 190 Mg ha?1, while those in other land cover types were typically less than 60 Mg ha?1.

Conclusion: Oil palm plantations have a species-poor tree community given active management; old plantations have a standing carbon stock which is comparable to that of secondary forest and far greater than that of pastures. Private forest reserves within oil palm company holdings play an important role in preserving primary forest tree diversity in human-modified landscapes in Amazonia.  相似文献   

9.
Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model‐based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above‐ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1‐km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old‐growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr?1 (98 TgC yr?1 in forest biomass and 105 TgC yr?1 in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data.  相似文献   

10.
Functional diversity, an important element of avian biodiversity, can be examined by quantifying foraging guild composition. Understanding the ecological processes that underpin functional diversity of birds in oil palm Elaeis guineensis landscapes is important because different foraging guilds are likely to be influenced in different ways by land use practices. We surveyed birds at 55 sites within oil palm landscapes and at 20 sites within logged peat swamp forest, recording 208 species belonging to 19 foraging guilds. Oil palm landscapes supported a lower abundance of insectivorous, granivorous and omnivorous birds than did logged peat swamp forest despite the latter being severely degraded due to intensive timber extraction. However, abundances of other groups of foraging birds, such as raptors and wetland taxa, were higher in oil palm landscapes than logged peat swamp forest. Frugivorous species were more abundant in smallholdings than plantation estates, probably because of the presence of native trees. Foraging guild diversity was explained by stand‐level attributes such as stand age, vegetation cover, epiphyte persistence and canopy cover. However, each foraging guild exhibited unique responses to different oil palm management regimes and stand‐level attributes. Only arboreal omnivores and terrestrial frugivores were affected by the proximity of nearby natural forest. This diversity of responses implies that the occurrence of particular avian foraging guilds may not be a suitable ecological indicator of best‐practice palm oil production. Our study also suggests that multiple conservation measures will be needed in oil palm landscapes irrespective of management regimes, including: (1) the maintenance of ground layer vegetation cover; (2) the pruning of oil palm canopy to permit light penetration to the ground layer; (3) re‐vegetation of parts of oil palm landscapes with native trees; and (4) retention of natural and/or secondary forest patches within the boundaries of plantations.  相似文献   

11.
Several lines of evidence suggest that nitrogen in most tropical forests is relatively more available than N in most temperate forests, and even that it may function as an excess nutrient in many tropical forests. If this is correct, tropical forests should have more open N cycles than temperate forests, with both inputs and outputs of N large relative to N cycling within systems. Consequent differences in both the magnitude and the pathways of N loss imply that tropical forests should in general be more15N enriched than are most temperate forests. In order to test this hypothesis, we compared the nitrogen stable isotopic composition of tree leaves and soils from a variety of tropical and temperate forests. Foliar 15N values from tropical forests averaged 6.5 higher than from temperate forests. Within the tropics, ecosystems with relatively low N availability (montane forests, forests on sandy soils) were significantly more depleted in15N than other tropical forests. The average 15N values for tropical forest soils, either for surface or for depth samples, were almost 8 higher than temperate forest soils. These results provide another line of evidence that N is relatively abundant in many tropical forest ecosystems.  相似文献   

12.

Purpose

A framework for the inclusion of land use impact assessment and a set of land use impact indicators has been recently proposed for life cycle assessment (LCA) and no case studies are available for forest biomass. The proposed methodology is tested for Scandinavian managed forestry; a comparative case study is made for energy from wood, agro-biomass and peat; and sensitivity to forest management options is analysed.

Methods

The functional unit of this comparative case study is 1 GJ of energy in solid fuels. The land use impact assessment framework of the United Nations Environment Programme and the Society of Environmental Toxicology and Chemistry (UNEP-SETAC) is followed and its application for wood biomass is critically analysed. Applied midpoint indicators include ecological footprint and human appropriation of net primary production, global warming potential indicator for biomass (GWPbio-100) and impact indicators proposed by UNEP-SETAC on ecosystem services and biodiversity. Options for forest biomass land inventory modelling are discussed. The system boundary covers only the biomass acquisition phase. Management scenarios are formulated for forest and barley biomass, and a sensitivity analysis focuses on impacts of land transformations for agro-biomass.

Results and discussion

Meaningful differences were found in between solid biofuels from distinct land use classes. The impact indicator results were sensitive to land occupation and transformation and differed significantly from inventory results. Current impact assessment method is not sensitive to land management scenarios because the published characterisation factors are still too coarse and indicate differences only between land use types. All indicators on ecosystem services and biodiversity were sensitive to the assumptions related with land transformation. The land occupation (m2a) approach in inventory was found challenging for Scandinavian wood, due to long rotation periods and variable intensities of harvests. Some suggestions of UNEP-SETAC were challenged for the sake of practicality and relevance for decision support.

Conclusions

Land use impact assessment framework for LCA and life cycle impact assessment (LCIA) indicators could be applied in a comparison of solid bioenergy sources. Although forest bioenergy has higher land occupation than agro-bioenergy, LCIA indicator results are of similar magnitude or even lower for forest bioenergy. Previous literature indicates that environmental impacts of land use are significant, but it remains questionable if these are captured with satisfactory reliability with the applied LCA methodology, especially for forest biomass. Short and long time perspectives of land use impacts should be studied in LCA with characterisation factors for all relevant timeframes, not only 500 years, with a forward-looking perspective. Characterisation factors need to be modelled further for different (forest) land management intensities and for peat excavation.  相似文献   

13.
M. Šrůtek 《Plant Ecology》1993,106(1):73-87
The effects of different management practices (mainly mowing, grazing, nutrient enrichment) on floodplain vegetation were compared between the Austrian and Czech part of the Lunice River floodplain using nitrophilous vegetation with Urtica dioica. The vegetation samples situated on crosswise transects (40 in total) were used for the analysis of vegetation. Correlations between the floodplain width on these transects and the proportions (expressed as percentage of the total floodplain width) of selected characteristics (Urtica dioica and Phalaris arundinacea stands and managed areas) were not statistically significant. Differences in the proportions of selected characteristics between the two parts of the floodplain were not significant either, except differences in the proportion of managed areas and species richness (higher species richness and proportion of managed areas are in the Austrian part of the floodplain). The different environmental variables were used in ordinations (DCA and CCA) of vegetation samples. In the DCA, four groups of samples were interpreted. In the CCA changes the moisture gradient was the most important one. The transect distance (from the first transect in Austria) and the soil moisture had the closest relationship to the species data.  相似文献   

14.
王志杰  代磊 《生态学报》2021,41(9):3429-3440
快速城市化发展对脆弱喀斯特山地城市生态环境造成严重威胁,系统监测评价城市土地利用/覆被格局变化及其生态效应,协调生态保护与城市发展的关系是新时期喀斯特山地城市生态文明示范城市建设的重要命题。以贵阳市花溪区为对象,以2013年和2018年Landsat ETM/OLI遥感影像为主要数据源,运用遥感和GIS技术,采用遥感生态指数(Remote Sensing Ecological Index,RSEI)模型,在系统分析研究区土地利用/覆被类型和生态环境质量时空动态变化的基础上,剖析土地利用/覆被变化的生态效应。结果表明:(1)2013-2018年花溪区土地利用/覆被格局发生明显变化,形成以林地、建设用地和耕地3种类型占优的格局态势,以耕地的大量减少(减少约15353.37 hm2)且90%转为建设用地或林地、灌木地为主要特征,并伴有局部林地退化(约2683.80 hm2)的现象;(2)5年间,花溪区生态环境质量呈下降趋势,RSEI从2013年的0.622下降到2018年的0.499,下降约20%,反映植被覆盖度和不透水建设用地的绿度指标和干度指标对花溪区生态环境质量的贡献最大;(3)土地利用/覆被与生态环境质量的分布和变化在空间上基本吻合;林地面积或林地与灌木地面积的增减对生态环境质量的变化具有显著影响,林地或林地与灌木地面积增加10%,可使生态质量好转面积增加约15%-20%,或减少生态质量恶化面积约4%;而林地的退化面积增加10%,可导致生态质量恶化面积增加约14%。研究可为喀斯特山地城市国土空间格局优化、城市生态环境改善、生态文明城市建设提供科学依据。  相似文献   

15.
In situ hybridization histochemistry (ISHH) has been used to study the differential distribution and relative abundance of mRNAs encoding a stimulatory alpha subunit of the G-protein (Gs) and glutamic acid decarboxylase (GAD) in the dorsal hippocampus in adult rat brain. The present quantitative study shows that GABAergic neurons containing high levels of GAD mRNA, express considerably more Gs message than excitatory principal neurons, the granule cells of the dentate gyrus and the pyramidal cells of CA1 subfield. A subpopulation of basket cells of the dentate gyrus exhibited a uniquely high level of Gs mRNA, in addition to GAD. These findings may indicate a specific functional role for Gs in these GABAergic neurons in the hippocampus.  相似文献   

16.
Nitrogen (N) enrichment of tropical ecosystems is likely to increase with rapid industrial and agricultural development, but the ecological consequences of N additions in these systems are not well understood. We measured soil N- oxide emissions and N transformations in primary rain forest ecosystems at four elevations and across two substrate types on Mt. Kinabalu, Borneo, before and after short-term experimental N additions. We also measured N pools and fluxes across a land use gradient of primary forest, burned secondary forest, and fertilized agriculture. Background soil N2O and NO emissions in primary forest decreased with elevation, and soils derived from sedimentary substrates had larger pools of inorganic N, rates of nitrification, and N-oxide fluxes than ultrabasic soils when there were significant differences between substrate types. N-oxide emissions after N additions and background rates of nitrification were low in all soils derived from ultrabasic substrates compared to sedimentary substrates, even at lowland sites supporting, diverse Dipterocarp forests growing on morphologically similar Oxisols. Rates of potential nitrification were good predictors of N-oxide emissions after N additions. N2O and NO fluxes were largest at low elevations and on sedimentary-derived soils compared to ultrabasic-derived soils, even at the smallest addition of N, 15kgNha–1. Because current methods of soil classification do not explicitly characterize a number of soil chemical properties important to nutrient cycling, the use of soil maps to extrapolate biogeochemical processes to the region or globe may be limited in its accuracy and usefulness. In agricultural systems, management practices were more important than substrate type in controlling N-oxide emissions and soil N cycling. N-oxide fluxes from agricultural fields were more than an order of magnitude greater than from primary forests on the same substrate type and at the same elevation. As primary forests are cleared for intensive agriculture, soil N2O and NO emissions are likely to far exceed those from the most N-saturated tropical forest ecosystems. This study highlights the inter-dependence of climate, substrate age, N deposition, and land-use practices determining N cycling and N-oxide emissions in humid tropical regions.  相似文献   

17.

Purpose

Change of vegetation cover and increased land use intensity, particularly for agricultural use, can affect species richness. Within life cycle impact assessment, methods to assess impacts of land use on a global scale are still in need of development. In this work, we present a spatially explicit data-driven approach to characterize the effect of agricultural land occupation on different species groups.

Methods

We derived characterization factors for the direct impact of agricultural land occupation on relative species richness. Our method identifies potential differences in impacts for cultivation of different crop types, on different species groups, and in different world regions. Using empirical species richness data gathered via an extensive literature search, characterization factors were calculated for four crop groups (oil palm, low crops, Pooideae, and Panicoideae), four species groups (arthropods, birds, mammals, and vascular plants), and six biomes.

Results and discussion

Analysis of the collected data showed that vascular plant richness is more sensitive than the species richness of arthropods to agricultural land occupation. Regarding the differences between world regions, the impact of agricultural land use was lower in boreal forests/taiga than in temperate and tropical regions. The impact of oil palm plantations was found to be larger than that of Pooideae croplands, although we cannot rule out that this difference is influenced by the spatial difference between the oil palm- and Pooideae-growing regions as well. Analysis of a subset of data showed that the impact of conventional farming was larger than the impact of low-input farming.

Conclusions

The impact of land occupation on relative species richness depends on the taxonomic groups considered, the climatic region, and farm management. The influence of crop type, however, was found to be of less importance.  相似文献   

18.
Mature green tomato fruit (Lycopersicon esculentum Mill) of cv. Rutgers and the line Alcobaca-red were vacuum infiltrated with solutions of polyamines, their precursors and metabolites, and other compounds which might affect ripening and/or storage duration. Putrescine (1,4-diaminobutane), spermidine, spermine, diaminopropane, -aminobutyric acid and methionine were found to increase the storage life of these fruit after vacuum infiltration of the test compounds and storage of fruit in darkness. Polyamines probably play a role in the normal ripening/overripening process and may prove commercially valuable in the extension of fruit shelf life.The use of polyamines and related compounds in prolongation of the storage or shelf life of fruit is the subject of U.S. patent No. 4,957,757 (1990) awarded to the Cornell University Research Foundation.  相似文献   

19.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

20.
Maps of continental‐scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time‐scales. User groups with an interest in past land cover include the climate modelling community, socio‐ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan‐European land cover change for the period 9000 bp to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 bp through reduction in broad‐leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan‐European scale moved outside the range of previous background variability from 4000 bp onwards. From 2200 bp land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 bp . Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover‐climate interactions, and the origins of the modern cultural landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号