首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The inflorescence of flowering plants is a highly organized structure, not only contributing to plant reproductive processes, but also constituting an important part of the entire plant morphology. Previous studies have revealed that the class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS (BP or KNAT1), KNAT2, and KNAT6 play essential roles in inflorescence architecture. Pedicel morphology is known to contribute greatly to inflorescence architecture, and BP negatively regulates KNAT2 and KNAT6 to ensure that pedicels have a normal upward-pointing orientation. These findings indicate that a genetic network exists in controlling pedicel orientation, but how this network functions in the developmental process remains elusive. Here it is reported that the ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) gene, which belongs to the BELL1-like homeodomain gene family, is a new member participating in regulating pedicel orientation in the class-I KNOX network. In a genetic screening for suppressors of isoginchaku-2D, a gain-of-function ASYMMETRIC LEAVES2 mutant that displays downward-pointing pedicels, a suppressor mutant was obtained. Characterization of this mutant revealed that the mutation corresponds to ATH1. Genetic analysis indicated that ATH1 acts mainly in the KNAT2 pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that ATH1 physically interacts with KNAT2. The data indicate that the ATH1-KNAT2 complex acts redundantly with KNAT6, both of which are negatively regulated by BP during pedicel development.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
The KNAT2 (for KNOTTED-like from Arabidopsis thaliana 2) homeobox gene is expressed in the vegetative apical meristem. It is also active during flower development, suggesting a function in the structuring of flowers. To investigate its role, we used a DEXAMETHASONE (DEX)-inducible system to generate transgenic plants that overexpressed a fusion of KNAT2 with the hormone binding domain of the glucocorticoid receptor. DEX-induced plants were similar to plants overexpressing the closely related KNAT1 gene, indicating overlapping functions, although we observed differences as well. In particular, KNAT2-GR activation induced ectopic carpel features. First, KNAT2 induced the homeotic conversion of nucellus into carpel-like structures. Second, KNAT2 induced stigmatic papillae on rosette leaves in the ap2-5 background. Third, ectopic expression of the carpel identity gene AGAMOUS (AG) was observed in carpels and ovules. Interestingly, the homeotic conversion was not dependent on AG activity, because it was maintained in the ag-1 ap2-5 double mutant. Therefore, our data indicate that KNAT2 also must activate other carpel regulators. Together, these results suggest that KNAT2 plays a role in carpel development.  相似文献   

14.
The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling   总被引:14,自引:0,他引:14  
Using a transgenic line that overexpresses a fusion of the KNAT2 (KNOTTED-like Arabidopsis) homeodomain protein and the hormone-binding domain of the glucocorticoid receptor (GR), we have investigated the possible relations between KNAT2 and various hormones. Upon activation of the KNAT2-GR fusion, we observed a delayed senescence of the leaves and a higher rate of shoot initiation, two processes that are also induced by cytokinins and inhibited by ethylene. Furthermore, the activation of the KNAT2-GR fusion induced lobing of the leaves. This feature was partially suppressed by treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, or by the constitutive ethylene response ctr1 mutation. Conversely, some phenotypic traits of the ctr1 mutant were suppressed by the activation of the KNAT2-GR fusion. These data suggest that KNAT2 acts synergistically with cytokinins and antagonistically with ethylene. In the shoot apical meristem, the KNAT2 gene is expressed in the L3 layer and the rib zone. 1-Aminocyclopropane-1-carboxylic acid treatment restricted the KNAT2 expression domain in the shoot apical meristem and reduced the number of cells in the L3. The latter effect was suppressed by the activation of the KNAT2-GR construct. Conversely, the KNAT2 gene expression domain was enlarged in the ethylene-resistant etr1-1 mutant or in response to cytokinin treatment. These data suggest that ethylene and cytokinins act antagonistically in the meristem via KNAT2 to regulate the meristem activity.  相似文献   

15.
G Chuck  C Lincoln    S Hake 《The Plant cell》1996,8(8):1277-1289
Plant development depends on the activity of apical meristems, which are groups of indeterminate cells whose derivatives elaborate the organs of the mature plant. Studies of knotted1 (kn1) and related gene family members have determined potential roles for homeobox genes in the function of shoot meristems. The Arabidopsis kn1-like gene, KNAT1, is expressed in the shoot apical meristem and not in determinate organs. Here, we show that ectopic expression of KNAT1 in Arabidopsis transforms simple leaves into lobed leaves. The lobes initiate in the position of serrations yet have features of leaves, such as stipules, which form in the sinus, the region at the base of two lobes. Ectopic meristems also arise in the sinus region close to veins. Identity of the meristem, that is, vegetative or floral, depends on whether the meristem develops on a rosette or cauline leaf, respectively. Using in situ hybridization, we analyzed the expression of KNAT1 and another kn1-like homeobox gene, SHOOT MERISTEMLESS, in cauliflower mosaic virus 35S::KNAT1 transformants. KNAT1 expression is strong in vasculature, possibly explaining the proximity of the ectopic meristems to veins. After leaf cells have formed a layered meristem, SHOOT MERISTEMLESS expression begins in only a subset of these cells, demonstrating that KNAT1 is sufficient to induce meristems in the leaf. The shootlike features of the lobed leaves are consistent with the normal domain of KNAT1's expression and further suggest that kn1-related genes may have played a role in the evolution of leaf diversity.  相似文献   

16.
17.
18.
19.
20.
通过筛选百脉根(Lotus 7aponicus)基因组文库,克隆了LjCYC1(Lotus japonicus Cycloidea-like1)基因.L7CYC1是金鱼草(Antirrhium)CYC (Cycloidea)基因的同源基因,CYC属于TCP[TBl(teosinte branchedl),CYC,PCFs(PCFl and PCF2)]基因家族,编码转录调控子控制金鱼草花的对称性.基因组序列分析表明,LjCYC1的开放阅读框(ORF)由两个外显子和一个内含子组成,其cDNA编码的LjCYC1蛋白包含了370个氨基酸.蛋白序列分析显示,LjCYC1包含一个TCP结构域和一个R结构域,属于TCP结构域蛋白家族的CYC/TBl亚家族;LjCYCl氨基酸序列与CYC相比,一致性和相似性分别为39.0%和42.6%.不同长度的LjCYCl-cDNA与报告基因GUS融合后,通过粒子轰击(particle bombardment)方法在洋葱表皮细胞瞬时表达融合蛋白,观察到包含了TCP结构域的融合蛋白能够进行细胞核定位,提示LjCYCl可能作为转录因子行使功能;TCP结构域自身不能完成核定位过程,还需要结构域两侧旁邻氨基酸序列的协助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号